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Abstract—Kernel principal component analysis (kPCA) learns
nonlinear modes of variation in the data by nonlinearly mapping
the data to kernel feature space and performing (linear) PCA
in the associated reproducing kernel Hilbert space (RKHS).
However, several widely-used Mercer kernels map data to a
Hilbert sphere in RKHS. For such directional data in RKHS,
linear analyses can be unnatural or suboptimal. Hence, we
propose an alternative to kPCA by extending principal nested
spheres (PNS) to RKHS without needing the explicit lifting map
underlying the kernel, but solely relying on the kernel trick. It
generalizes the model for the residual errors by penalizing the
Lp norm / quasi-norm to enable robust learning from corrupted
training data. Our method, termed robust kernel PNS (rkPNS),
relies on the Riemannian geometry of the Hilbert sphere in
RKHS. Relying on rkPNS, we propose novel algorithms for
dimensionality reduction and classification (with and without
outliers in the training data). Evaluation on real-world datasets
shows that rkPNS compares favorably to the state of the art.

I. INTRODUCTION

Principal component analysis (PCA) finds modes of vari-
ation of the data, residing in a linear space, as a set of
orthogonal directions that maximize the variance of the data
projected onto them. The orthogonal basis defines a sequence
of nested subspaces that optimally capture increasing fractions
of the total variance of the data. Kernel PCA (kPCA) [1]
uses the kernel trick and implicitly maps the data to a
higher-dimensional kernel feature space that is associated with
a reproducing kernel Hilbert space (RKHS). Then, kPCA
performs PCA on the implicitly mapped data in the RKHS.
Linear modes of variation in the mapped space correspond to
nonlinear modes of variation in the input space, thus enabling
kPCA to yield a more compact model of the data variability.

Many Mercer kernels, e.g., radial basis function kernels,
map the input data to a Hilbert sphere [1] in RKHS F (Fig-
ure 1). The spherical structure arises because for such kernels
k(·, ·), any input datum x has a self similarity k(x, x) =
1. The kernel defines the inner product in F , and thus,
〈Φ(x),Φ(x)〉F = 1, implying that all mapped points Φ(x) are
at a unit distance from the origin in F . The practice of defining
normalized kernels k̃(x, x′) := k(x, x′)/

√
k(x, x)k(x′, x′),

e.g., pyramid match kernel [2], also leads to k̃(x, x) = 1.
Polynomial kernels lead to constant self similarity when the
input data have constant l2 norm, e.g., in facial image anal-
ysis [1]. When the mapped data in RKHS is directional [3],
linear analyses, like kPCA, can be unnatural or suboptimal.

We propose an alternative to kPCA for kernels that lead
to directional data in RKHS, by performing a decomposition
of the Hilbert sphere. Manifold-based statistical analysis [4]–
[9] explicitly models data to reside in the lower-dimensional
subspace of the ambient space, representing variability in the

data more efficiently (fewer degrees of freedom restricted to
the manifold) and improve post-processing performance. In
this way, we extend kPCA to (i) define a more meaningful
sequence of nested subspaces capturing variability of the
mapped data on the Hilbert sphere in RKHS and (ii) represent
equivalent variability using a subspace of smaller dimension
leading to a more compact model of the data. Similarly, we
extend principal nested spheres (PNS) [10] to the Hilbert
sphere in RKHS; we do so without needing the explicit lifting
map underlying the kernel, solely using the kernel trick.

Real-world data represented in a high-dimensional space
exhibits a small intrinsic dimension. kPCA attempts to capture
these modes of variation via the principal eigenvectors of
the implicitly mapped data in RKHS. Theoretically, PCA
of directional data will typically introduce one additional /
unnecessary principal mode of variation, along a radial direc-
tion and proportional to the sectional curvature. In practice,
however, the unstable and erroneous behavior of PCA in high-
dimensional spaces [11] interacts with the curvature of the
Hilbert sphere on which the data resides. This often leads to a
much poorer performance of PCA on high-dimensional direc-
tional data, contrary to our expectations on low-dimensional
directional data. This behavior is evident in our empirical
results, where our spherical analysis in RKHS yields larger
gains than those expected in low dimensions.

Many applications involve corrupted data exhibiting weak
signals, high noise, or missing values. An example is image
recognition in scenarios where the visibility is low, e.g., at
night or underwater, or there exist occluders [12]. In such
cases, robust methods for training and recognition are vital.
These typically use robust penalties (e.g., Huber loss) that
penalize the Lp (p < 2) norm of residuals (resulting after
the model fit) to reduce effect of outliers in the learning. They
typically use iterative optimization that is costlier than eigen
analysis in kPCA. We incorporate such a robust penalty during
model learning and show that this can be achieved for PNS
on the Hilbert sphere in RKHS solely using the kernel trick.

In this paper, we propose new formulations and algorithms
to perform PNS on the Hilbert sphere in RKHS, without
needing the explicit lifting map, but using the kernel trick.
We generalize the model for the residual errors underlying
PNS to enable robust learning from corrupted training data.
We use our method, termed robust kernel PNS (rkPNS), for
dimensionality reduction and classification. We evaluate the
quality of model compactness, dimensionality reduction, and
classification on real-world datasets and demonstrate advan-
tages of rkPNS over the state of the art, including robust kPCA.
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II. RELATED WORK

Riemannian statistics has become an important tool for data
analysis [5], [7]–[9], [13]–[15], e.g., for data lying on the
manifolds of orthogonal matrices, symmetric positive definite
matrices, hyperspheres, Grassmann manifold, and shape space.
Some extensions of PCA to manifold-valued data rely on
principal geodesic analysis (PGA) [6], [16]. Our rkPNS relies
on the Riemannian geometry of the Hilbert sphere in RKHS,
especially (i) the geodesic distance between two points, which
is the arc cosine of their inner product, and (ii) the existence
and formulation of tangent spaces [17]–[19].

Many RKHSs being infinite dimensional brings up concerns
associated with statistical analysis in such spaces [20], [21].
Indeed, these same concerns arise in kPCA, and other well-
known kernel methods, and thus the justification for this work
is similar. First, we may assert that the covariance operator of
the mapped data is of trace class or, more strongly, restricted
to a finite-dimensional manifold defined by the cardinality of
the input data. Second, such methods are intended mainly for
data analysis instead of statistical estimation, and, thus, we
intentionally work in the subspace defined by the sample size.

Modeling a probability density function (PDF) on a sphere
entails fundamental trade-offs between model generality and
the viability of the underlying parameter estimation. For
example, although Fisher-Bingham PDFs on Sd can model
anisotropic distributions (anisotropy around the mean) using
O(d2) parameters, their parameter estimation may be in-
tractable [3], [22]. On the other hand, parameter estimation for
the O(d)-parameter von Mises-Fisher PDF is tractable [22],
but it only models isotropic distributions. In contrast, rkPNS
captures the modes of variation via a sequence of hyper-
spherical submanifolds with decreasing intrinsic dimension.
We show that this is tractable on Hilbert spheres in RKHS,
using the kernel trick. rkPNS differs from PNS by avoiding
an explicit representation of the mapped points Φ(x).

Algorithms for robust kPCA appear in the recent litera-
ture [23]–[26], but all assume the mapped data to lie in a
linear space, and all would ignore the Hilbert-sphere structure
of the mapped data. Similar to our rkPNS, [24], [25] intro-
duce a robust penalty on the residual and describe iterative
optimization algorithms. Unlike our method, the spherical-
kPCA, projection-pursuit, and Stahel-Donoho outlyingness
based algorithms in [23] are not motivated as optimization
problems and have algorithm components that are heuristic.
The randomized algorithm in [26] can be time consuming
because it repeats kPCA a number of times proportional to
the sample size. Inspired by previous works on manifold-based
data analyses [5], [7]–[9], [13], [15], we find that our robust
kernel-based method exploiting the Hilbert-sphere structure of
the data leads to advantages over linear analyses.

III. GEOMETRY OF THE HILBERT SPHERE IN RKHS

We focus on RKHSs of infinite dimension related to popular
kernels. Similar theory holds for other important kernels where
the RKHS dimension is finite.

Let X be a random variable taking values x in input space.
Let {xn}Nn=1 be a set of observations in input space. Let
k(·, ·) be a real-valued Mercer kernel with an associated map
Φ(·) that implicitly maps x to Φ(x) := k(·, x) in a RKHS
F [1]. For vectors in RKHS represented as a linear combi-
nation of the mapped input points, i.e., f :=

∑I
i=1 αiΦ(xi)

and f ′ :=
∑J
j=1 βjΦ(xj), the inner product 〈f, f ′〉F :=∑I

i=1

∑J
j=1 αiβjk(xi, xj) and the norm ‖f‖F :=

√
〈f, f〉F .

Let Y := Φ(X) be a random variable taking values y
in RKHS, with {yn := Φ(xn)}Nn=1. Like kPCA [27], [28],
we assume Y is bounded and the expectation and covariance
operators of Y exist and are well defined. The analysis in this
paper applies to kernels that map points in input space to a
Hilbert sphere in RKHS, i.e., ∀x : k(x, x) = κ, a constant;
without loss of generality, we assume κ = 1. For such kernels,
the rkPNS model applies to the Riemannian manifold of the
unit Hilbert sphere [29], [30] in RKHS, centered at the origin.

Consider a and b on the unit Hilbert sphere in RKHS
represented as a :=

∑
n γnΦ(xn) and b :=

∑
n δnΦ(xn). The

Log map of a with respect to b is the tangent vector

Logb(a) =
a− 〈a, b〉F b
‖a− 〈a, b〉F b‖F

arccos(〈a, b〉F ) (1)

that lies within the span of a and b and can be represented as∑
n εnΦ(xn), where ∀n : εn ∈ R. Logb(a) lies in the tangent

space, at b, of the unit Hilbert sphere. The tangent space
inherits the same structure (inner product) as the ambient space
and, thus, is also a RKHS. The geodesic distance between a
and b is dg(a, b) = ‖Logb(a)‖F = arccos(〈a, b〉F ).

IV. ROBUST KERNEL PRINCIPAL NESTED SPHERES

We extend PNS to the Hilbert sphere in RKHS and uses a
robust fitting term to deal with outliers in the data. Consider
{ym : ‖ym‖F = 1}Mm=1 on the unit Hilbert sphere in RKHS,
represented, in general, as ym :=

∑N
n=1 ηmnΦ(xn).

A. Parameterizing Nested Hilbert Subspheres in RKHS

The rkPNS algorithm iteratively performs the following 2
steps: (i) fit a subsphere of one dimension lower than the
dimension of the sphere on which the mapped data resides and
(ii) project data on fitted subsphere. The resulting sequence of
subspheres is nested, i.e., any fitted subsphere of dimension d
lies completely within all fitted subspheres of dimension > d.
The final subsphere of dimension 0 is defined as the Karcher
mean of the projected data. The Karcher mean is unique if
the support of the projected data is a proper subset of a half
circle [31], [32], which is often observed in practice.

Although the data lie on an infinite-dimensional Hilbert
sphere in RKHS, M unit-length data vectors can always be
contained within a unit Hilbert subsphere isomorphic to SM−1.
In rkPNS, the projected data on each fitted subsphere always
lie in the span of the original mapped data. Because each
projection reduces the intrinsic dimension of the data by one,
the fitted subspheres are isomorphic to SM−2,SM−3, · · · ,S1.
In this way, the number of iterations for the subsphere fitting
is upper bounded by M − 2. This relates to modern applied
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Fig. 1. Robust Kernel Principal Nested Spheres. Input datum xi (orange)
gets implicitly mapped to Φ(xi) (blue) on the unit Hilbert sphere in RKHS,
centered at the origin. A Hilbert subsphere O(v, r) (black) is parameterized
by an axis v (magenta) orthogonal to itself and a geodesic distance r. In
each iteration, rkPNS (i) fits a subsphere to the data and (ii) projects the data
(red) onto the subsphere using the minimal geodesic (green) between them.

problems with data of high dimension (D) and low sample
size (N � D) [33], where the data dimension can be reduced
to N − 1 without any loss of information.

We parameterize the Hilbert subsphere by (i) a unit-norm
vector v that represents an axis orthogonal to the subsphere
and (ii) the geodesic distance r ∈ (0, π/2] between v
and any point within the subsphere. Thus, the subsphere is
O(v, r) := {f ∈ F : ‖f‖F = 1, ‖Logv(f)‖F = r}.
Alternately, this subsphere is the intersection of the unit Hilbert
sphere with the hyperplane {f ∈ F : 〈f, v〉F = cos(r)},
where v is orthogonal to the hyperplane. rkPNS leads to a
sequence of nested subspheres O(v, r) parameterized by a
corresponding sequence of axes that are mutually orthogonal
and a sequence of corresponding radii. We represent the axis v
as a linear combination of the implicitly-projected input data,
i.e., v :=

∑M
m=1 θmym. Choosing v within the span of the data

ensures that the axis v is orthogonal to the axes of every larger
dimensional Hilbert subsphere that also contains the data.

B. Robust Fitting of Nested Subspheres in RKHS

Given points {ym}Mm=1, we formulate the problem of fit-
ting a robust Hilbert subsphere as a constrained optimization
problem in RKHS, which finds an axis v :=

∑M
m=1 θmym and

radius r that minimizes a robust penalty designed as a function
of the geodesic distances between the subsphere O(v, r)
and each datum ym :=

∑N
n=1 ηmnΦ(xn); ‖ym‖F = 1. We

propose the robust penalty as the p-th power of the Lp norm or
quasi norm, where 0 < p ≤ 2, of the vector of residuals. Thus,
we propose the best-fitting sphere to have (r∗, {θ∗m}Mm=1) :=

arg min
r,{θm}Mm=1

J ({ym}Mm=1; r, {θm}Mm=1)

such that r ∈ (0, π/2] and

∥∥∥∥∥
M∑
m=1

θmym

∥∥∥∥∥
F

= 1, (2)

where the objective function J ({ym}Mm=1; r, {θm}Mm=1) :=

M∑
m=1

((
‖Logv(ym)‖F − r

)2
+ ε
)p/2

, (3)

where p is a user-defined parameter (tuned via cross validation)
and ε := 10−5 is used to regularize the Lp norm to make
it smooth and amenable to gradient-based optimization. To
solve this constrained optimization problem, we optimize the

parameters v and r using projected gradient descent with step
size found via line search; this guarantees convergence to a
local minimum. We initialize v to a direction within the span
of the projected data such that v minimizes the sum of squared
distances, from the origin, of the projections of ym onto the
direction v (analogous to PCA).

Most importantly, ‖Logv(ym)‖F = arccos(〈v, ym〉F ) =
arccos(η>mGηθ), where (i) ηm is the column vector with n-
th element being ηmn, (ii) G is the Gram matrix where the
element at row i and column j is Gij := 〈Φ(xi),Φ(xj)〉F ,
(iii) η is the matrix with the m-th column as ηm, and (iv) θ is
a column vector with the m-th element being θm. Thus, the
objective function J ({ym}Mm=1; r, {θm}Mm=1) =

M∑
m=1

((
arccos(η>mGηθ)− r

)2
+ ε
)p/2

. (4)

This shows that the gradient of the objective function with
respect to the variables r and {θm}Mm=1 solely requires the
knowledge of Gram matrix G without needing the explicit
mapping Φ(·). Thus, we can perform the proposed subsphere
fitting on the Hilbert sphere in RKHS using the kernel trick.

C. Projecting Data on the Fitted Subsphere

After a subsphere O(v, r) is fitted to {ym}Mm=1, each point
ym is projected onto O(v, r) by the following algorithm.
1) Inputs: Implicitly mapped points {ym}Mm=1 contained

within a Hilbert subsphere isomorphic to, say, SD−1, where
ym :=

∑N
n=1 ηmnΦ(xn). Fitted subsphere O(v, r) with

axis v :=
∑M
m=1 θmym.

2) We project ym onto O(v, r) to give zm := (ym sin(r) +
v sin(arccos(〈v, ym〉F ) − r))/ sin(arccos(〈v, ym〉F )) [10]
that is representable as a linear combination of Φ(xn).

3) To put all zm on a unit Hilbert sphere centered at the origin,
translate them by −v cos(r) and rescale by 1/ sin(r).

4) Outputs: Projected points {zm :=
∑N
n=1 ξmnΦ(xn)}Mm=1

on unit Hilbert subsphere O(v, r) isomorphic to SD−2.
This projection requires solely the knowledge of the Gram
matrix G, without needing the explicit mapping Φ(·).

D. Algorithm for rkPNS

First, we consider the points {ym}Mm=1 in RKHS to be in
general position [34], i.e., the points are not contained in any
sphere isomorphic to SM−2. Then rkPNS does the following.
1) Inputs: Data {xn}Nn=1 in input space, with or without

outliers, and the associated Gram matrix G. We do not
need the lifting map Φ(·) underlying the kernel.

2) Initialize count i := M . Let the implicitly mapped points
be yim := ym = Φ(xm),∀m.

3) Fit a subsphere O(vi, ri) to {yim}Mm=1, using gradient
descent optimization in Section IV-B.

4) Project points {yim}Mm=1 onto the fitted subsphere
O(vi, ri), using the algorithm in Section IV-C, to produce
the projected points {yi−1m }Mm=1 orthogonal to vi.

5) Reduce the count i← i−1. If i > 2, then repeat the fitting
and projection (last 2 steps); otherwise, proceed.
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6) Optimize for the Karcher mean µ in RKHS on the unit
Hilbert sphere (i.e., ‖µ‖F = 1) represented as a linear com-
bination

∑M
m=1 ρmy

2
m of the projected points {y2m}Mm=1

that lie on a subsphere isomorphic to S1, using the gradient
descent algorithm described in [35]. As shown by [35],
finding the Karcher mean only needs the Gram matrix G,
without the need for the explicit map Φ(·).

7) Outputs: A sequence of mutually orthogonal axes
vM , · · · , v3 and distances rM , · · · , r3 representing a se-
quence of nested spheres O(vM , rM ), · · · ,O(v3, r3) iso-
morphic to SM−2, · · · ,S1. A Karcher mean µ.

When the points {ym}Mm=1 are contained in a unit Hilbert
subsphere isomorphic to SD where D ≤ M − 2, the nested
subsphere sequence will be shorter because fewer projections
will result in the data lying on the subsphere isomorphic to S1.
Thus, the subspheres will be isomorphic to SD−1, · · · ,S1. In
such cases, which are typical in practice, we alter the stopping
criterion as follows. If we fit a subsphere to points lying on a
Hilbert sphere isomorphic to S1, then the projected points will
be identical to at most two possible points. This condition can
be checked at each iteration and can be used to terminate the
iterations. If met, we backtrack and find the Karcher mean for
points on the Hilbert sphere isomorphic to S1.

We see that rkPNS guarantees the axes vM , · · · , v3 to
be mutually orthogonal. Clearly, vM is orthogonal to vM−1

because vM−1 is defined to be in the span of the projected
data {yM−1m }Mm=1 that is orthogonal to vM . Similarly, vM is
also orthogonal to vM−2 because vM−2 is within the span of
{yM−2m }Mm=1 that is, in turn, within the span of {yM−1m }Mm=1

that is orthogonal to vM . Thus, vM being orthogonal to vi

implies that vM is orthogonal to all vj for 3 ≤ j ≤ i − 1.
Extending the argument for vM to other vk, each vk is
orthogonal to all vj for 3 ≤ j ≤ k − 1. The Karcher mean
µ must lie in the span of the projected data {y2m}Mm=1 on
a Hilbert subsphere isomorphic to S1 [31], [35]. Hence, the
Karcher mean lies in the span of the original {ym}Mm=1.

V. RKPNS FOR DIMENSIONALITY REDUCTION

We now propose a dimensionality-reduction algorithm.
1) Inputs: Data {xn}Nn=1 in input space, with or without

outliers. Gram matrix G. Desired embedding dimension D.
2) Perform rkPNS using the algorithm in Section IV-D.
3) Apply a sequence of projections, as per Section IV-C, to

the mapped data {yn}Nn=1 so that the projected data, say
{yD+1
n }Nn=1, lies on a Hilbert subsphere isomorphic to SD.

4) Map the projected data in the tangent space at µ to give
vectors {tn := Logµ(yD+1

n )}Nn=1.
5) Perform PCA on the tangent space vectors {tn}Nn=1. Project

each vector tn on the D eigenvectors of the sample
covariance matrix, producing D coordinates un ∈ RD.

6) Outputs: The transformed data {un ∈ RD}Nn=1.

VI. RKPNS FOR CLASSIFICATION

We propose algorithms for classification using rkPNS. First,
we propose an algorithm for training a classifier.

1) Inputs: For the Q classes (denoted by q = 1, 2, · · · , Q),
Nq sample points {xqn}

Nq

n=1 for class q. Gram matrix G,
for the pooled dataset, underlying a kernel such that all
diagonal elements equal 1. Parameter D ∈ N.

2) Pool all the data and perform rkPNS using the algorithm
in Section IV-D. For each of the principal D subspheres
O(v3, r3), · · · ,O(vD+2, rD+2) that capture most of the
variation in the mapped data, compute the signed residual
resulting from projecting each Φ(xqn) onto a subsphere
O(vd, rd) and scale that by

∏D+2
i=d+1 sin(ri) (accounting

for different sizes of the D subspheres [10]) to give the
feature {uqn ∈ RD}Nq

n=1 for point n in class q.
3) Learn a classifier C based on features {uqn ∈ RD}Nq

n=1

for each class q. We train Q one-versus-all linear support
vector machine (SVM) classifiers [36].

4) Outputs: A sequence of nested spheres
O(vM , rM ), · · · ,O(v3, r3), Karcher mean µ, classifier C.

Now, we propose an algorithm for classifying unseen data.
1) Inputs: The Gram matrix G for the training data. The

rkPNS model represented via a sequence of nested spheres
O(vM , rM ), · · · ,O(v3, r3) and the Karcher mean µ. Pa-
rameter D and classifier C. Test image x to be classified
along with the extension of the Gram matrix (one row
/ column) for this test image’s feature vector x, giving
kernel similarity of the test image’s feature vector x with
all training image feature vectors.

2) Get feature u for the datum x to be classified, as done
during training using the sequence of D nested subspheres.

3) Use classifier C to classify feature u into a class, say q′.
4) Output: Class q′.

VII. RESULTS AND DISCUSSION

We evaluate the proposed (rk)PNS-based statistical analyses
for data having the structure of a Hilbert sphere in RKHS,
comparing them to standard linear analyses that ignore the
spherical structure underlying the data.

We incorporate robustness in kPCA by treating kPCA as an
optimization problem for finding the Karcher mean (in RKHS)
and finding a set of orthogonal directions that maximize
variance of the data projected on the direction vector through
the mean. Then, instead of maximizing the variance, i.e., sum
of squared distances between the mean and the projected
points, we maximize the sum of p-th power of the distances,

Fig. 2. Toy Example with Simulated Data (PNS versus PCA). For data
{xn}Nn=1 drawn from a von-Mises Fisher distribution on S2, and using the
kernel k(x, x′) = x>x′, the quality of dimensionality reduction for rkPNS
is far better than kPCA, for embedding dimensions 1 and 2.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 3. Model Compactness captured via cumulative percent variances (=
percentage of total variance explained by the chosen modes; this factors out
differences in distance metrics) captured in the principal nested subspaces for
UCI data [37]: (a) fertility. (b) vertebral column, (c) ecoli, (d) concrete slump
test, (e) seeds, (f) iris, (g) glass identification, (h) haberman.

where 0 < p ≤ 2 is a free parameter. We refer to this strategy
as robust kPCA (rkPCA) in this section of the paper; this is
similar to [24] with a certain influence function. If we fix
p = 2, the proposed rkPNS and rkPCA reduce to kPNS (a
subset of the proposed rkPNS) and kPCA, respectively.

To evaluate the performance of dimensionality reduction,
we use the co-ranking matrix [38] to compare rankings of
pairwise distances between (i) data points in the original high-
dimensional space (i.e., without any dimensionality reduction)
and (ii) the projected data points in the lower-dimensional
embedding found by the algorithm. Based on this motivation,
a standard measure to evaluate the quality of dimensionality-
reduction algorithms is to average, over all data points, the
fraction of other data points that remain inside a κ neighbor-
hood defined based on the original distances [38].

For each real-world dataset, we repeat the following process
25 times: we randomly select 80% data points, run all algo-
rithms, and compute the quality metric. We evaluate rkPNS
and rkPCA using (i) Gaussian kernel k(x, x′) := exp(−0.5 ‖
x−x′ ‖2 /σ2), where we set σ2 is set to the average squared
distance between all pairs of points (xi, xj), and (ii) normal-
ized version of the polynomial kernel k(x, x′) := (x>x′)q ,
where we set q := 10. We find that these results are quite
stable up to 30% perturbation in these parameter values.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 4. Dimensionality Reduction Quality on UCI data [37] in the same
order (a)–(h) as Figure 3.

Model Compactness. For rkPNS and rkPCA, we evaluate
the cumulative percent variances captured in the nested sub-
spheres / subspaces, respectively, associated with the principal
modes of variation. For proof of concept of the utility of
manifold-based analysis for directional data, we evaluate the
methods for dimensionality reduction on simulated data, i.e.,
200 points on S2 sampled from a von-Mises Fisher distri-
bution, using the linear kernel k(x, x′) = x>x′ that reduces
kPNS to PNS and kPCA to PCA. We do not introduce outliers
in the data and, hence, fix p = 2. On simulated data (Figure 2),
for nested subspheres / subspaces of intrinsic dimension 1
and 2, PNS captured 85% and 100% of the total variance,
respectively, while PCA captured only 37% and 70%. On
UCI data [37] (Figure 3), compared to kPCA, kPNS typically
captures a larger (never smaller) percentage of the variance
for the same intrinsic dimension of the nested subspace.

Dimensionality Reduction. We compare rkPNS with
rkPCA. On simulated data (Figure 2), PNS preserves the
neighborhood structure better than PCA, using embedding
dimensions of both 1 and 2. For UCI data (Figure 4), we
choose the embedding dimension D to be the minimum, over
all methods, of the intrinsic dimension of the nested subspace /
subsphere that captures 70% of the total variance. Here, kPNS
performs better (never worse) than kPCA. The results with
locally linear embedding [39], multidimensional scaling [40],
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(a) (b)
Fig. 5. Classification. Box plots of error rates over multiple trials for the
(a) MNIST [42] and (b) Pen-Based [37] datasets.

(a) (b)
Fig. 6. Classification (With Outliers). Box plots of error rates over multiple
trials for the (a) MNIST [42] and (b) Pen-Based [37] datasets.

and Laplacian eigenmaps [41], without using kernels, are just
for context; their kernel versions are akin to kPCA [40].

Classification. We compare rkPNS and rkPCA for recogniz-
ing handwritten digits, on the MNIST dataset [42] and the Pen-
Based dataset [37], over varying values of reduced-dimension
parameter D (see Section VI); methods’ performances will
become similar for large D when no information is lost. Both
these datasets have a small fraction of outliers inherently and,
hence, we allow p to be less than 2; we tune the parameter
p using 5-fold cross validation. In this case (Figure 5), we
find that rkPNS often performs better then (or about as good
as) rkPCA. In another experiment, we introduce outliers in
both these datasets by reducing to zero the values in 20%
of the randomly-chosen dimensions in the feature vector, i.e.,
pixel intensities in MNIST and attributes in the Pen-Based
dataset. In this case (Figure 6), we find that the recognition
error rates using rkPNS are almost always better than those
from rkPCA when the reduced dimension is small; error rates
often 5%− 10% lower for MNIST.
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