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Abstract

We address the problem of generating realistic 3D motions of humans interacting
with objects in a scene. Our key idea is to create a neural interaction field attached
to a specific object, which outputs the distance to the valid interaction manifold
given a human pose as input. This interaction field guides the sampling of an object-
conditioned human motion diffusion model, so as to encourage plausible contacts
and affordance semantics. To support interactions with scarcely available data,
we propose an automated synthetic data pipeline. For this, we seed a pre-trained
motion model, which has priors for the basics of human movement, with interaction-
specific anchor poses extracted from limited motion capture data. Using our
guided diffusion model trained on generated synthetic data, we synthesize realistic
motions for sitting and lifting with several objects, outperforming alternative
approaches in terms of motion quality and successful action completion. We call
our framework NIFTY: Neural Interaction Fields for Trajectory sYnthesis. Project
Page: https://nileshkulkarni.github.io/nifty

1 Introduction

Animating a character to sit in a chair or pick up a box is useful in gaming, character animation,
and populating digital twins. Yet, generating realistic 3D human motion trajectories with objects is
challenging for two main reasons. One challenge is creating effective models that capture the nuance
of human movements, particularly during the final phase of object interaction called the "last mile."
Unlike navigation that is primarily collision avoidance, the last mile involves intricate contacts and
object affordances, which influence the motion. The second challenge is acquiring paired data that
includes high-quality human motions and diverse object shapes, which is essential for training.

Recent approaches to motion modeling can synthesize realistic human movements using state-of-the-
art generative models [13, 33, 42]. They are, however, scene-agnostic and cannot produce interactions
with specific objects.

To address this, some approaches condition motion synthesis on scene geometry (e.g., a scanned
point cloud) [19, 47, 48, 50]. This enables learning object interactions, but motion quality is hindered
by the lack of paired full scene-motion data. Other approaches [11, 38, 56] instead focus on a small
set of interactions with a single type of object (e.g., sitting in a chair), and can produce high-quality
motions in their domain. However, these methods require a high-quality motion capture (mocap)
dataset for each action/object separately and may make action-specific modeling assumptions (e.g.,
affecting the human approach and/or contact with object).

In this work, we tackle both the modeling and data aspects of interaction synthesis to enable generating
realistic interactions with a variety of objects, such as sitting on a chair, table, or stool and lifting a
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Figure 1: NIFTY Overview. (Left) Our learned object interaction field guides an object-conditioned
diffusion model during sampling to generate plausible human-object interactions like sitting. (Right)
Our automated training data synthesis pipeline generates data for this model by combining a scene-
unaware motion model with small quantities of annotated interaction anchor pose data.

suitcase, chair, etc.. We extend a human motion diffusion model [42] to condition on object geometry,
and pair it with a learned object interaction field to encourage realistic movements at test time in
the last mile of interaction. To train this model and overcome the lack of available mocap data, we
develop an automated data pipeline that leverages a powerful pre-trained and scene-agnostic human
motion model. As shown in Fig. 1, our interaction field, diffusion model, and motion data pipeline
make up a general framework to synthesize human-object interactions for a desired character that is
flexible to multiple actions, even when dense mocap data is unavailable. We refer to this framework
as NIFTY: Neural Interaction Fields for Trajectory sYnthesis.

To ensure realistic motions in the last mile of interaction, we propose an object-centric interaction field
that takes in a human pose and learns to regress the distance to a valid interaction pose (e.g., the final
sitting pose). At test time, our object-conditioned diffusion model is guided by this interaction field
to encourage high-quality motions. Unlike manually designed guidance objectives that encourage
contact and discourage penetration [19], our interaction field is data-driven and implicitly captures
notions of contact, object penetration, and any other factors learned from data.

We propose using synthetic data generation to enable learning interactions from limited mocap data.
In particular, we leverage a pre-trained motion model [33] that produces high-quality motions but
is unaware of object geometry. Starting from an anchor pose that captures the core of a desired
interaction (e.g., the final sitting pose in Fig. 1, right), the pre-trained model is used to sample a large
variety of motions that end in the anchor pose. This approach generates a diverse set of plausible
interactions from only a handful of anchor poses, which are readily available from existing small
datasets [3] or are relatively easy to capture.

We evaluate NIFTY on sitting and lifting interactions for a variety of objects, demonstrating the
superior quality of synthesized human motions compared to alternative approaches. Overall, this
work contributes (1) a novel object interaction field approach that guides an object-conditioned
human motion diffusion model to synthesize realistic interactions, (2) an automated synthetic data
generation technique to produce large numbers of plausible interactions from limited pose data, and
(3) high-quality motion synthesis results for human interactions with several objects.

2 Related Work

Synthesizing Human Motion and Interactions. While various methods have been successful in
generating human motion in isolation [13, 17, 30, 33, 42, 57], our work is primarily focused on
incorporating environmental context [4, 5]. Some approaches condition motion generation on scanned
scene geometry that encompasses multiple objects [19, 47, 48, 49], but these methods typically offer
limited control over the specific objects for interaction. Object-centric models are trained to generate
motions for a single character [11, 38] and limited actions [56], such as sitting on a chair. These
models heavily rely on high-quality motion capture datasets but still exhibit issues like floating,
skating, and penetration. Our work also focuses on individual objects but utilizes diffusion guidance
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and a learned interaction field to minimize undesired artifacts. In contrast to prior work, we train our
models using a novel data generation pipeline to learn interactions from limited data. Our focus is on
macroscopic interactions like sitting and lifting with objects, distinguishing us from other works that
generate full-body motions for grasping and manipulation [8, 39, 40].
Motion Modeling with Diffusion. Following success for image [14, 28] and video [16] generation,
diffusion models [37] have shown promise in modeling motion for robots [20] and pedestrians [34].
Recently, diffusion models have been successful in generating full-body 3D human motion [6, 42, 44,
55]. SceneDiffuser [19] generates human motion conditioned on a point cloud from a scanned scene.
It employs gradient-based guidance and analytic objectives to ensure collision-free, contact-driven,
and smooth motion during the denoising process. On the contrary, our approach is object-centric and
does not rely on noisy motions [12] for training. Our data-driven interaction field guides denoising
by implicitly capturing plausible interactions and obviating the need for hand-designed objectives.
Neural Distance Fields for Pose and Interaction. Neural networks have been used to learn a
parametric function that outputs a distance given a query coordinate [52]. Grasping Fields [22]
parameterize hand-object grasping through a spatial field that outputs distances to valid hand-object
grasps. Pose-NDF [43] learns an object-unaware distance field in the full-body pose space for
human poses. NGDF [51] and SE(3)-DiffusionFields [45] learn a field in the robot gripper pose
space to define a manifold of valid object grasps. Our object interaction field extends this idea to
full-body human-object interactions by learning to predict the distance between a human pose and
the interaction pose manifold. Unlike prior works, we use this field to guide denoising.
Human Interaction Data. Though large-scale mocap data is available to train scene-agnostic human
motion models [25], learning human-object interactions is hampered by the challenge of capturing
humans in scenes. Datasets that contain full scene scans paired with human motion [10, 12, 18, 35, 58]
are relatively small and often noisy due to capture difficulties. Other datasets contain single-object
interactions with a small set of objects [3, 11, 21, 40, 56]. These are better quality due to simpler
capture conditions, but are small with limited scope. Recent approaches circumvent the data issue
through automated synthetic data generation. For example, 3D scenes can be inferred from pre-
recorded human motions to get plausible paired scene-motion data [50, 53, 54]. However, motions
from these methods are limited to available pre-recorded data. Our data generation pipeline requires
only a small set of interaction anchor poses and generates novel motions not contained in prior
datasets using tree-based rollouts [57] from a pre-trained generative model [33].

3 Method

In this section, we detail our NIFTY pipeline for learning to synthesize realistic human-object
interaction motions. §3.1 introduces a conditional diffusion model to generate human motions given
the geometry of an object. §3.2 details the object-centric interaction field, which guides the denoising
process of the diffusion model to capture the nuances of interactions in a data-driven way. In §3.3,
we discuss the synthetic data generation using a pre-trained motion model that is seeded with anchor
poses from a smaller dataset. This data is used to train the diffusion model and interaction field.

3.1 Motion Generation using Diffusion Modeling

Motion Representation. Motion generation is formulated as predicting a sequence of 3D human
pose states that capture a person’s motion over time. The pose state representation is based on the
SMPL body model [23] and is similar to prior successful human motion diffusion models [9, 42].
The human pose state Xi at frame i in a motion sequence is:

Xi = {jpi , j
r
i , j

v
i , j

ω
i , t

p
i , t

v
i }, (1)

which includes joint positions jpi ∈ R3×22, rotations jri ∈ R6×22, velocities jvi ∈ R3×22, and
angular velocities jωi ∈ R3×22 for all 22 SMPL joints including the root (pelvis). Additionally, the
SMPL global translation tpi ∈ R3 and velocity tvi ∈ R3 are included. A motion (trajectory) is a
sequence of N poses denoted as τ = {X1, . . . , XN} where all poses are in a canonical coordinate
frame, namely, the local frame of the pose X1 at the first timestep where the human is at the origin
and its front-facing vector is aligned with the +Y axis.
Model Formulation. The diffusion model simultaneously generates all human poses in a motion
sequence [42] to achieve a desired interaction. Intuitively, diffusion is a noising process that converts
clean data into noise. We want our motion model to learn the reverse of this process so that realistic
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Figure 2: Model Architecture. Our full motion synthesis method (middle) consists of an object
interaction field Fϕ (left), which guides the diffusion model Mθ (right) at sampling time to produce
plausible interaction motions. At each step k ∈ [0,K = 1000] of denoising, the diffusion model
predicts a clean motion τ̂ 0 from a noisy motion input τ k and conditioning information. The object
interaction field takes the last pose from the diffusion output as input, and uses guidance to push the
pose towards the valid interaction manifold using a predicted pose correction.

motions can be generated from randomly sampled noise. Mathematically, forward diffusion is a
Markov process with a transition probability distribution:

q(τ k|τ k−1) := N (τ k;µ =
√

1− βkτ k−1, σ = βkI), (2)

where τ k denotes the motion trajectory at the kth noising step, and a fixed βk is chosen such
that q(τK) ≈ N (τK ;0, I) after K steps. Our generative model learns the reverse of this process
(denoising), i.e., it recovers τ k−1 from a noisy input trajectory τ k at each step and doing this
repeatedly results in a final clean motion τ 0. Because the model is generating interaction motions
with an object, we condition denoising on interaction information C = {Po, Ro,b, X0}, which
includes the canonicalized object point cloud Po ∈ R5000×3, rigid object pose relative to the person
Ro ∈ R4×4, SMPL body shape parameters b ∈ R10, and starting pose of the person X0. Each
reverse step is then:

pθ(τ
k−1|τ k, C) := N (τ k−1;µ = µθ(τ

k, k, C), σ = βkI), (3)

where the diffusion step k is also given as input. Instead of predicting the noise ϵk added at
each step of the diffusion process [14, 20], our model directly predicts the final clean signal [34,
42]. Mathematically, the motion model Mθ with parameters θ predicts a clean trajectory τ̂ 0 =
Mθ(τ

k, k, C) from which the mean µθ(τ
k, k, C) is easily computed [28]. This formulation has the

benefit that physically grounded objectives can be easily computed on τ̂ 0 in the pose space, which is
useful for guidance as discussed below.

While training the diffusion model, a ground truth clean trajectory τ 0 is noised and given as input,
then the model is trained to minimize the objective ∥τ̂ 0 − τ 0∥22. To enable using classifier-free
guidance [15] at sampling time, the conditioning C is randomly masked out with 10% probability
during the training process so that the model can operate in both conditional and unconditional modes.
Sampling and Guidance. At test time, samples are generated from the model given random noise
and interaction conditioning C as input. We find that leveraging classifier-free guidance [15] tends to
generate higher-quality samples. This amounts to generating one conditional and one unconditional
sample from the model and then combining them as τ̂ 0 = Mθ(τ

k, k)+s(Mθ(τ
k, k, C)−Mθ(τ

k, k)),
where the strength of the conditioning is controlled by the scalar s.

Ensuring that the sampled motions adhere to the geometric and semantic constraints of the object is
key to plausible interactions. Diffusion models are well-suited for this, since guidance can encourage
samples to meet desired objectives at test time [20]. The core of guidance is a differentiable function
G(τ 0) that evaluates how well a trajectory meets a desired objective; this could be a learned [20]
or an analytic [34] function. In our case, we want G(τ 0) to evaluate how plausible an interaction
motion is w.r.t. the object, and in §3.2 we show that this can be done with a learned object interaction
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field. Throughout denoising during sampling, the gradient of the objective function will be used to
nudge trajectory samples in the correct direction. We use a formulation of guidance that perturbs the
clean trajectory output from the model τ̂ 0 at every denoising step k as follows [16, 34]:

τ̃ 0 = τ̂ 0 − α∇τkG(τ̂ 0) (4)

where α controls the guidance strength. The updated trajectory τ̃ 0 is then used to compute µ.
Architecture. As shown in Fig. 2 (right), the motion model Mθ is based on a transformer encoder-
only architecture [42, 46]. The model takes as input the current noisy trajectory τ k, the denoising
step k, and the conditioning C. Each human pose in the trajectory is a token, while each conditioning
becomes a separate token. Of note, the object point cloud Po is encoded with a PointNet [32], the
rigid pose Ro is encoded with a three-layer MLP, and k is encoded using a positional embedding [41].
Our noise levels k vary between 0 to 1000 diffusion steps. The transformer handles variable-
length sequence inputs and outputs the clean motion prediction τ̂ 0. Full details are available in the
supplementary material.

3.2 Object Interaction Fields

After training on human-object interactions, the diffusion model can generate reasonable motion
sequences but fails to fully comply with constraints in the last mile of interaction [2, 7], even when
conditioned on the object. This causes undesirable artifacts such as penetration with the object.

Figure 3: Interaction Field Visualization. We
query the field in several locations with a sitting
pose (a subset shown in grey) and visualize the
output for pelvis, feet, and neck joints. All cylin-
ders are oriented towards the chair, indicating the
correction vector’s magnitude and direction. This
correction is due to the misalignment between the
sitting pose and chair position.

To alleviate this issue, we propose to guide mo-
tion samples from the diffusion model (i.e., use
Eq. (4)) with a learned objective G that captures
realistic interactions for a specific object.

We take inspiration from recent work that uses
neural distance fields to learn valid human
pose manifolds [43] and robotic grasping mani-
folds [51]. For our purposes, the field must take
in an arbitrary human pose and output how far
the query pose is from being a “valid” object
interaction pose. We define an interaction pose
to be an anchor frame in a motion sequence that
captures the core of the interaction, e.g., the mo-
ment a person settles in a chair during sitting (as
in Fig. 1) or contacts an object before lifting.

We propose an object interaction field that op-
erates in the local coordinate frame of a spe-
cific object. The interaction field Fϕ takes as
input a simplified pose X̃={jp, tp}, which in-
cludes joint positions and global translation. The
field outputs an offset vector ∆X̃=Fϕ(X̃) that
projects the input pose to the manifold of valid interaction poses for the object: X̃+∆X̃ is then a
plausible interaction pose. Fig. 3 visualizes the output vectors of an example interaction field for a
chair. Querying the field with a sitting pose away from the chair (i.e., not a valid interaction) gives a
correction pointing back towards the chair. For further away points, the visualized vectors are longer,
indicating larger corrections are needed.
Guidance Objective. The object interaction field serves as a differentiable function that can be
incorporated into the guidance objective to judge how far a motion is from the desired interaction
manifold. Let X̃i ∈ τ be the simplified pose from the ith frame of a motion τ . If we know that this
pose should be a valid interaction pose, then the guidance objective is defined as G(τ ) = ∥Fϕ(X̃i)∥22.
During denoising at test time, we feed output poses from the diffusion model into this guidance
objective to encourage the generated motion to contain a valid interaction poses.
Training. Supervising Fϕ requires a dataset of invalid poses with corresponding valid interaction
poses. We collect this after training the diffusion model detailed in §3.1. In particular, we feed a
noisy ground-truth interaction motion τ k at a random noise level k to the diffusion model as input.
This gives an output motion τ̂ 0, which should match the ground truth τ 0 if the model is perfect. In
practice, denoising back to ground truth is difficult at high noise levels (e.g., k=900), so we consider
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Figure 4: Generated Synthetic Data. We visualize motion sequences from one tree rollout for one
sitting anchor pose. The middle shows a bird’s-eye view of the pelvis joint trajectories in light
pink. All trajectories end in the same sitting pose, but start at diverse locations around the chair. We
highlight a few trajectories in blue and show full-body motions from the corresponding generations
on the left and right sides. Our complete dataset contains many trees for different objects and humans.

τ̂ 0 as an invalid interaction motion with a corresponding valid motion τ 0. When the diffusion model
has been trained on the dataset described in §3.3, we know that the last frame of the motion X̃N ∈ τ̂ 0

should be the interaction pose, so we can throw away all other poses to arrive at a training dataset for
the interaction field. We further augment this dataset by applying random rigid transformations to the
invalid interaction poses.

Given a ground truth interaction pose ỸN ∈ τ 0 and corresponding output pose from the diffusion
model X̃N ∈ τ̂ 0, the interaction field training loss is computed as ∥Fϕ(X̃N )− (ỸN − X̃N )∥1. Note
that training on outputs from the diffusion model is important since the interaction field operates on
these kinds of outputs during test-time guidance.
Architecture. As shown in Fig. 2 (left), the interaction field architecture is an encoder-only trans-
former that operates on the input pose as a token. In practice, it also takes in the canonical object
point cloud as a conditioning token to allow training a single field for multiple objects.

3.3 Automatic Synthetic Data Generation

Training the diffusion model requires a large, realistic, and diverse dataset of motions for each
human-object interaction we wish to synthesize. Unfortunately, this data exists only for specific
interactions [56] and is difficult and expensive to collect from scratch. Therefore, we propose an
automated pipeline to generate synthetic interaction motion data. In short, we first select anchor
pose frames from an existing small dataset [3] that are indicative of an interaction we want to learn.
Our key insight is to use a pre-trained scene-unaware motion model [33] to sample a diverse set of
motions that end at a selected anchor pose, and therefore demonstrate the desired interaction. We
provide the key details in this section and a full description appears in the supplementary material.
Anchor Pose Selection. We require a small set of anchor poses that capture the core frame of an
interaction motion. As described in §3.2, for sitting on a chair this is the sitting pose when the person
first becomes settled in the chair (see Fig. 1). In generating motion data, these anchor poses will be
the final frame of each synthesized motion sequence. For the experiments in §4, these anchor frames
are chosen manually from a small dataset that contains a variety of interactions [3].
Generating Motions in Reverse. The goal is to generate human motions that end in the chosen
anchor poses and reflect realistic object interactions. We leverage HuMoR [33], which is a conditional
motion VAE trained on the AMASS [25] mocap dataset. It generates realistic human motions through
autoregressive rollout, but is scene-unaware. To force rollouts from HuMoR to match the final anchor
pose, we could use online sampling or latent motion optimization, but these are expensive and not
guaranteed to exactly converge. Instead, we re-train HuMoR as a time-reversed motion model that
predicts the past instead of the future motion given a current input pose. Starting from a desired
interaction anchor pose XN , our reverse HuMoR will generate XN−1, XN−2, · · · , X1 forming a full
interaction motion that, by construction, ends in the desired pose.
Tree-Based Rollout & Filtering. To ensure sufficient diversity and realism in motions from HuMoR,
we devise a branching rollout strategy that is amenable to frequent filtering and results in a tree of

6



plausible interactions. Starting from the anchor pose, we first sample 30 frames (1 sec) of motion.
Then, multiple branches are instantiated and random rollout continues for another 30 frames on these
branches independently. Continuing in this branching fashion allows growing the motion dataset
exponentially while also filtering to ensure branches are sufficiently diverse and do not contain
undesireable motions. Filtering involves heuristically pruning branches with motions that collide
with the object, float above the ground plane, result in unnatural pose configurations, and become
stationary. For the experiments in §4, we rollout to a tree depth of 7 and sample many motion
trees starting from each anchor pose. Individual paths are extracted from the tree to give interaction
motions, and we post-filter out sequences that start within 1 meter of the object.
Generated Datasets. We use this scalable strategy to generate data for training our motion model
for sitting and lifting interactions. Fig. 4 demonstrates the diversity of our generated datasets by
visualizing top-down trajectories and example motions from a single tree of sitting motions. For the
sitting interaction dataset, we choose 174 anchor pose frames across 7 subjects in the BEHAVE [3]
dataset. This results in a dataset of 200K motion sequences that include sitting on chairs, stools,
tables, and exercise balls. Each motion sequence in this dataset ends at a sitting anchor pose. For
lifting interactions, 72 anchor poses from 7 subjects produces 110K motion sequences. Each sequence
ends at a lifting anchor pose when the person initially contacts the object.

4 Experiments

We evaluate our NIFTY method after training on the sitting and lifting datasets introduced in §3.3.
Implementation details are given in §4.1, followed by a discussion of evaluation metrics in §4.2 and
baselines in §4.3. Experimental results are presented in §4.4 along with an ablation study in §4.5.

4.1 Implementation Details

We train our diffusion model Mθ for 600K iterations with a batch size of 32 using the AdamW [24]
optimizer with a learning rate of 10−4. A separate model is trained for sitting and lifting. We use
K=1000 diffusion steps in our model and sample the diffusion step k from a uniform distribution
at each training iteration. The object interaction field Fϕ is trained on the data described in §3.2
for 300K iterations using AdamW with a maximum learning rate of 5× 10−5 and a one cycle LR
schedule [36]. When sampling from the diffusion model, 10 samples are generated in parallel and all
are guided using the object interaction field; the sample with the best guidance objective score is used
as the output. We apply interaction field guidance on the last frame of motion (i.e., the interaction
anchor pose in our datasets). Our models are trained using PyTorch [29] on NVIDIA A40 GPUs, and
take about 2 days to train. Visualizations use the PyRender engine [26].

4.2 Evaluation Setting and Metrics

To ensure we properly evaluate the generalization capability of methods trained on our synthetic
interaction datasets, we do not create a test set using the procedure described in Sec. 3.3, which may
result in a very similar distribution to training data. Instead, we create a set of 500 test scenes for
each action, where objects are randomly placed in the scene and the human starts from a random pose
generated by HuMoR. All methods are tested on these same scenes during evaluation.

Evaluating human motion coupled with object interactions is challenging and has no standardized
protocol. Hence, we evaluate using a diverse set of metrics including a user perceptual study. We
briefly describe the metrics next and include full details in the supplementary material.
User Study. No single metric can capture all the nuances of human-object interactions, so we employ
a perceptual study [27, 39, 40, 42, 50]. For each method, we create videos from generated motions
on the test scenes. To compare two methods, users are presented with two videos on the same test
scene and must choose which they prefer (full user directions are in the supplement). We perform
independent user studies for lifting and sitting actions using hive.ai [1]. Responses are collected
from 5 users for every comparison video, giving 2500 total responses in each comparison study.
Foot Skating. Similar to prior work [27], we define the foot-skating score for a sequence of N
timesteps as 1

N

∑N
i vi(2 − 2hi/H) · 1h<=H , where vi is the velocity and hi is the height above

ground of the right toe vertex for the ith frame. H is 2.5 cm. Intuitively, this is the mean foot velocity
when it is near the ground (where it should be 0), with higher weight applied closer to the ground.
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Table 1: Quantitative Comparison. Our method outperforms baselines on both sitting and lifting.
Our diffusion model, guided by the learned interaction field, generates motions that reach the object
(D2O) with few penetrations and realistic contacts. Motions approaching the object are realistic with
low foot skating and the final interaction pose is similar to synthetic data with low skeleton distance.

Sitting Lifting
Method Foot % D2O D2O Skel. Contact % Pen. Foot % D2O D2O Skel. Contact % Pen.

Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ IoU ↑ ≤ 2cm ↑ Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ IoU ↑ ≤ 2cm ↑
Cond. VAE [50] 0.77 88.8 0.13 1.07 0.21 46.6 0.66 57.4 0.66 1.70 0.03 60.1
Cond. MDM [42] 0.36 37.9 1.06 2.81 0.04 50.5 0.28 36.3 1.14 2.58 0.02 46.2
NIFTY (ours) 0.47 99.6 0.00 0.54 0.54 65.0 0.34 77.7 0.05 0.42 0.17 68.5

Distance to Object (D2O). Similar to prior work [50], this evaluates whether the human gets close
to the object during the interaction. It measures the minimum distance from the human body in the
last frame of the motion sequence to any point on the object’s surface. We report the % of sequences
within 2 cm distance to avoid sensitivity to outliers, along with the 95th percentile (%̃) of this distance.
Penetration Score (% Pen). To evaluate realism as the human approaches an object for interaction,
we measure how much they penetrate the object. Based on our synthetic data, we define the first NA

frames of motion to be the approach for each action type (see supplement).

Then the penetration distance for a trajectory is 1
NA

∑
v

∑NA

i sdfi(v) · 1sdfi(v)>0, where sdfi is
the signed distance function of the human in the ith frame and v is one of 2K points on the object’s
surface. We report the percentage of trajectories with penetration distance ≤ 2 cm (% Pen. ≤ 2cm)
ignoring trajectories with D2O > 2 cm, since trajectories that do not approach the object will trivially
avoid penetration.
Skeleton Distance & Contact IoU. These evaluate how well generated interaction poses align with
ground truth poses and their human-object contacts. We start by finding the minimum distance
between the final pose of a generated sequence and the anchor poses in the synthetic training data.
The distance to this nearest neighbor pose is reported as the skeleton distance. To measure how well
contacts from the generated motion match the data, we compute the IoU between contacting vertices
(those that penetrate the object) on the predicted body mesh and those on the nearest neighbor mesh.

4.3 Baselines

Cond. VAE [50]. Closest to our problem definition, this model comes from recent work HUMAN-
ISE [50], which learns plausible human motions conditioned on scene and language for four actions
(lie, sit, stand, walk). This state-of-the-art model is a conditional VAE with a GRU motion encoder
and sequence-level transformer decoder. Since we evaluate on sitting and lifting actions separately,
we modify their approach to remove language conditioning. The model is trained on our synthetic
data for 600K iterations with the recommended hyperparameters and learning rate of 10−4.
Cond. MDM [42]. This baseline is the motion diffusion model (MDM) [42] with added
conditioning C, i.e., our object-conditioned diffusion model without interaction field guidance.

vs. 
 Cond. VAE

vs. 
 Cond. MDM

vs. 
 Syn. Data

0

50

100
88.7 91.0

46.7

90.0
81.6

47.6

% preferred NIFTY
Sit
Lift

Figure 5: User Study. NIFTY is preferred
≥ 88.7% of the time for sitting and ≥81.6%
for lifting compared to baselines. Our mo-
tions are also nearly indistinguishable from
synthetic data trajectories.

4.4 Experimental Results

User Study. Fig. 5 shows how often users prefer
our method (NIFTY) over baselines and Synthetic
Data (Syn. Data) for both sitting and lifting. We
perform separate studies for each comparison. Users
prefer NIFTY over baselines a vast majority of the
time. Averaged over both actions, NIFTY is preferred
over the Cond. VAE [50] baseline 89.4% of the time.
Similarly, NIFTY is preferred over Cond. MDM [42]
86.3% of the time, highlighting the importance of
using guidance with our interaction field during sam-
pling. Compared to held out motions from synthetic
data, NIFTY is preferred 47.2% of the time, which in-
dicates that the motions are nearly indistinguishable
from those of our data generation pipeline.
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Table 2: Ablation Study. Comparison between using an interaction field trained to predict a full
offset vector (NIFTY) or a single scalar distance (Distance OIF).

Sitting Lifting
Method Foot % D2O D2O Skel. Contact % Pen. Foot % D2O D2O Skel. Contact % Pen.

Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ IoU ↑ ≤ 2cm ↑ Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ IoU ↑ ≤ 2cm ↑
Distance OIF 0.41 80.9 0.47 1.25 0.24 66.8 0.30 57.4 0.74 1.31 0.07 70.1
NIFTY 0.47 99.6 0.00 0.54 0.54 65.0 0.34 77.7 0.05 0.42 0.17 68.5
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Figure 6: Qualitative Results. Our method (bottom row) generates realistic interaction motions that
reach the desired object with plausible contacts (e.g. col 1 & 4) while avoiding penetrations, unlike
baselines. The mesh color gets darker as time progresses. Cond. VAE [50] motions have the final
interaction pose away from the object (col 1,3,4), incorrect (col 2 & 5), or intersecting (col 5). Cond.
MDM [42] generates sitting poses far away from the object (col 1 & 3).

We further extract robust consensus across users by majority vote over the 5 responses for each video.
In this case, motions generated by our method are preferred 94.4% (sitting) and 97.8% (lifting) of the
time over Cond. VAE [50] motions, making the improvement gap even more apparent.

Additionally, we also conduct an user study on a Likert scale of scores between 1 (unrealistic) to 5
(very realistic). We report that motions from our synthetic dataset achieve a score of 4.39 vs. 4.87 for
motions in the AMASS [25]. Further details are available in Supp. § A.1.
Quantiative Results. In Tab. 1, NIFTY is compared to baselines for both sitting and lifting interac-
tions. NIFTY generates motions that reach the target object and approach realistically, as indicated
by distance-to-object (D2O) and penetration metrics. Although Cond. MDM [42] produces realistic
motion with low foot skating, it struggles to properly approach the object since it does not use
guidance from the learned interaction field. We see that interaction poses and the resulting object
contacts generated by our method do reflect the synthetic dataset, resulting in low skeleton distance
and high contact IoU, unlike Cond. VAE [50] which is worse across all metrics.
Qualitative Results. Fig. 6 shows a qualitative comparison between motions generated by our method
and baselines. NIFTY synthesizes realistic sitting and lifting with a variety of objects. Examples show
that the baselines struggle to generalize to unseen object poses, and have no mechanism to correct for
this at test time. Our learned interactions field helps to avoid this through diffusion guidance. Please
see the videos provided in the supplement to best appreciate the results.

4.5 Ablation Study

As detailed in §3.2, our object interaction field (OIF) is formulated to predict an offset vector ∆X̃
that captures both distance and direction for each component of the pose state, rather than a single
full-body distance like prior work [43]. We ablate this design decision in Tab. 2, which compares our
interaction field formulation to a version that predicts only a scalar distance to the interaction pose
manifold (Distance OIF). We observe that learning a single distance is a harder task compared to
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predicting an offset vector, which provides a stronger learning signal for training. As a result, the
ablated interaction field results in worse scores across most metrics.

5. Conclusion and Limitations
We introduced NIFTY, a framework for learning to synthesize realistic human motions involving 3D
object interactions. Results demonstrate that our object-conditioned diffusion model gives improved
motions over prior work when guided by a learned object interaction field and trained on automatically
synthesized motion data. Our current approach is limited to the body shapes present in the training
data (e.g., the 7 subjects from BEHAVE [3]), so future work should explore data augmentation
strategies to generalize to novel humans. Moreover, we have shown results on sitting and lifting, but
we would like to widen the scope to handle additional interactions by collecting new anchor poses,
synthesizing data, and training our diffusion model and interaction field.
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A Automated Synthetic Training Data Generation

All models in the paper train on synthetic human-object interaction motion data generated using this
pipeline. To evaluate the quality of generated data compared to other data, in § A.1 we perform a
large scale user-study with 10K user responses. In § A.2 we describe the complete details of data
generation including pseudo-code for the algorithm.

A.1 Data Quality User Study

Our synthetic data generation pipeline helps us collect high-quality motion data corresponding to
different interaction anchor poses. We show that this generated data is high-quality by conducting a
user study on a five-point Likert scale as in prior work [39, 40]. Our results show that the generated
synthetic training data is on par with data collected using a real mocap setup.
User Study Setup. We created a user-study dataset of 2000 videos, consisting of 500 motions
from the AMASS subset of HUMANISE sitting data [50] (i.e., real-world motion captured data),
500 motions from our data generation pipeline, 500 predicted motions from our NIFTY sitting
model, and 500 from Cond. VAE [50] predictions. For each motion, we rendered a video without
an object present in the scene to make the source of the video indistinguishable. All motions had a
random number of frames uniformly sampled from 60 to 120, where the last motion frame always
corresponded to the sitting interaction pose. We only show results on sitting as the HUMNISE [50]
does not have lifting interaction AMASS subset in their data.

We ask the users to rate the video on its realism. Users are asked to rate on a scale of 1 to 5
corresponding to “Strongly Disagree", “Disagree", “Neutral", “Agree", “Strongly Agree". We set up
the study on hive.ai [1]. Instructions to the user are shown in Fig. 7.
User Study Results. Results are shown in Fig. 8. As expected, AMASS has a high realism score
of 4.87 since it is actual mocap data. Training data generated using our algorithm has an average
user rating of 4.39, implying the quality is comparable motion collected using an expensive mocap
setup. We also report the performance of NIFTY and Cond. VAE [50] methods on the same study for
completeness. NIFTY achieves a strong score of 4.11 (between “agree” and “strongly agree”), which
is close to score of the Syn. Data. The Cond. VAE [50] performance remains low at 2.33 (between
“disagree” and “neutral”).
Filtering Unreliable Users. Note that every user is required to pass a qualification test containing
easy examples to label. User accuracy is computed and users with accuracy > 60% are admitted. To
ensure that we collect valid responses and that users completely understand the task during the actual
study, they are occasionally tested on “obvious" data called “honey pots" during the labeling process.
To this end, we add motions with objective “Strongly Agree" labels (motions from AMASS) and
some with "Strongly Disagree" labels (low-quality motions generated by cVAE). This is common
practice while conducting such a study, and we also do this for the user study in the main paper as

Figure 7: Likert User Study. We conduct a user study to assess the motion quality in our Synthetic
Dataset. On the left, we present the qualification instructions for participants, allowing only those
who perform well to proceed to the actual study. On the right, we display the user interface used
for labeling motions, where users select from five options: “Strongly Agree", “Agree", “Neutral",
“Disagree", or “Strongly Disagree". The results of this study can be found in Fig. 8
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Figure 8: Likert User Study Results. We conduct a study to judge the realism of sitting motions
on a scale of 1-5. Instructions for this study are available in §A.1. We show that synthetic training
data (Syn. Data) generated using our algorithm Algorithm 1 has an average rating of 4.39. This is
comparable to AMASS motions which represent quality of real captured data (using a mocap setup).

detailed in §C.1. The honeypot accuracy for this task is set at 82%: drops in performance below this
thresholds removes a user from continuing the study any further.

A.2 Training Data Synthesis Algorithm

Our generation process revolves around utilizing a pretrained motion model, specifically the HuMoR
generative model [33], to produce motion trajectories that end in a specific anchor pose. However, we
train this model on reverse-time sequences, enabling us to generate reverse-time sequences that start
from the provided anchor seed pose. Then, when we convert these rollouts into forward motions (i.e.,
play them backwards), the final generated pose in the rollout aligns with the anchor pose by design.

Our full algorithm for generating a single motion tree is shown in Algorithm 1. This algorithm
constructs a tree of a specified depth, where each node corresponds to a 1 sec motion clip. Each node
is connected to several possible branches to continue the motion (based on a branching factor B).
The algorithm begins by creating a root node starting at an input anchor pose. It then repeatedly
constructs the tree by generating motion sequences using the RollOut function and checking their
validity using the PruneCheck function. If a valid motion sequence is obtained, a child node is
created and added to the tree. The process continues until the desired depth is reached or the tree is
fully explored (no more branches left to explore)

The algorithm maintains a queue of nodes to be processed, allowing for breadth-first construction of
the tree. If a node reaches the maximum depth, it is skipped to ensure the tree is constructed as per
the specified depth. The algorithm outputs the resulting tree, which contains valid motion sequences
as paths from the root to the leaf nodes.
RollOut Function. The RollOut function takes an start pose and utilizes the pre-trained motion
model to generate a short 1 sec (30 frame) motion sequence. It iteratively runs the motion model
until a valid sequence is obtained or a specified maximum number of attempts is reached. If a valid
sequence is found, it is returned as the generated motion.
PruneCheck Function. The PruneCheck function examines a given motion sequence to determine
its validity. It algorithmically checks if the motion collides with the object, has unnatural human
poses, if the human is floating in the air, or intersecting with the floor etc.. It returns a boolean value
indicating whether the motion sequence is valid or not.
Implementation. In our implementation, we set B as 6 for the nodes at depths 1 and 2, while
B = 2 for nodes at higher depths. We also set NTries as 20 to secure a good rollout sequence. We
then convert all the motion nodes in these trees into individual motion sequences for a particular
interaction.
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Algorithm 1 Tree Generation. Our proposed tree-roll out algorithm using a pre-trained motion-
model

1: function ROLLOUT(startPose, N ) ▷ Input: start pose, N defining number of rollout attempts
2: validSequence← False
3: count← 0
4: while not validSequence and count < N do
5: motion← pretrained motion model generate motion using startPose
6: validSequence← PruneCheck(motion)
7: count← count + 1
8: end while
9: if validSequence then

10: return motion
11: else
12: return null
13: end if
14: end function

15: function PRUNECHECK(motionSequence) ▷ Input: motion sequence
16: valid← check if motionSequence is valid
17: return valid
18: end function

19: queue← empty queue
20: rootAnchorPose← input anchor pose
21: root← create root node NULL motion ▷ For the root node there is no past motion (NULL).
22: root.lastPose← root.anchorPose ▷ The anchor pose is the seed for future roll-outs
23: queue.push(root)
24: while queue is not empty do
25: currentNode← queue.pop()
26: if currentNode.depth = MaxDepth then
27: continue
28: end if
29: for child← 1 to B do
30: GMotion← RollOut(currentNode.lastPose,NTries) ▷ Create a RollOut
31: if GMotion ̸= null then ▷ Check if Good RollOut?
32: childNode← create child node with GMotion
33: childNode.lastPose← GMotion last frame ▷ Set the last motion frame for

childNode
34: currentNode.children.push(childNode)
35: queue.push(childNode) ▷ Add childNode to queue
36: end if
37: end for
38: end while
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B Implementation Details

Recovering Motion from τ 0. Our trajectory representation is over-parameterized and this allows
using the model outputs in multiple ways. To recover the generated motion we extract the per-frame
joint angles jri for the SMPL model. We integrate the velocity tvi along the XZ plane to recover the
XZ translation for the root joint and extract the corresponding Y component (upward) from tpi . This
strategy of extracting motion from the output parameterization is motivated by our use of guidance
with the diffusion model, which only operates on the last frame of a motion sequence. By integrating
velocity predictions over time, applying the guidance objective at the last frame will still have a strong
effect on earlier frames in the sequence.
Variable Length Input. Our model takes input motion trajectories with up to 150 frames. For
training, we pad motion sequences of lengths shorter than this with the last interaction frame from
the sequence.
SMPL model. Our SMPL [23] model does not have hand articulation, so we use the SMPL model
with only 22 articulated joints.
Pre-trained Motion Model for Data Generation. We train the motion model on a subset of the
AMASS dataset that does not contain extreme sporting actions like jumping, dancing, etc.We do this
by removing sequences from AMASS based on the labels from the BABEL dataset [31]. We use the
HuMoR-Qual [33] variant of the model to get high-quality motions, which uses the joint positions
computed through the SMPL parametric model as input to future roll-out time steps (as opposed to
using its own joint position predictions).
Transfomer Encoder.. We use a transformer encoder implemented using
torch.nn.TransformerEncoder from PyTorch [29]. Our each transformer layer consists
of 4 heads and a latent dim on 512. We have 8 such layers in our transformer.

C Experimental Details

This section provides additional details on the implementation of our user study and metrics from the
main paper in §4.

C.1 A/B Test User Study

We conduct a user study to qualitatively evaluate the performance of two methods. We design a study
such that, given a pair of motions, a user must choose one that is the most realistic. Specifically,
we ask the user “Which motion among the both is more realistic?" when we show them two videos
(each containing a motion generated by a different method) “LEFT VIDEO" & “RIGHT VIDEO".
Fig. 9 shows the instructions and user interface from the study. We conduct 3 such studies using
hive.ai [1], the results of which are in Fig 5 of the main paper.
Filtering Unreliable Users. We require users to understand instructions given in English. User
selection for the study is conditioned on the performance of a qualification test. Users with an
accuracy of ≥ 80% on this test are allowed to take the study. To ensure continued reliability during
the labeling process we randomly mix the real task data with “obvious" honeypot data where the
labels are objective. We require users to have a performance of ≥ 89% on these honeypot tasks. A
drop in performance below this results in the user being disqualified from taking the study further.

C.2 Metrics

Apart from performing the user study described in §C.1 we also evaluate all our models and baselines
on several quantitative metrics. We detail these metrics below (apart from the details already described
in Sec 4.2 of the main paper).
Penetration Score. To assess the realism of human motion when interacting with an object, we
calculate the penetration score during the approach phase. We define the approach phase as the initial
NA motion frames from a sequence of 150 frames (5 sec). Our rationale for selecting NA is that
during the approach phase, there should be minimal penetration of the human motion into the object
geometry. However, during the interaction, there should be increasing contact with the object. These
contacts typically result in zero or positive values in the signed distance function (SDF), indicating
penetration of points on the object surface into the human SMPL mesh.
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Figure 9: A/B Testing User Study We use this study to compare the quality of motions generated
by different methods by requiring them to generate human-object interaction motions. On the left,
we show the instruction set following which all users are required to pass a qualification exam to
participate in the study. On the right, we show the user interface as visible to users. The users
answer the question "Which motion is more realistic" and are required to choose one between “LEFT
VIDEO" or “RIGHT VIDEO".
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Figure 10: Penetration Score Sitting. We graph the percentage of motion sequences with a
penetration score of less than or equal to 2cm (Y-axis), compared to the number of approach frames,
denoted as NA (X-axis). Our findings reveal that regardless of the value of NA, NIFTY (green)
consistently exhibits a greater proportion of motion sequences with low penetration scores.

We compute NA for sitting and lifting separately based on our synthetic dataset. In particular, we
determine the first frame index of motion where object penetration distance continues to only increase
thereafter. We assume that after this point, the person is actually interacting with the object and
not just approaching it. For sitting, the typical onset of motion interaction occurs after the initial
117 frames of approach, based on the median NA. Likewise, lifting has a 15th percentile NA of
124 frames. We use the 15th percentile instead of the median (148 frames) to make this metric
more meaningful as 148 frames is almost the end of the complete motion and we wish to evaluate
the approach. This difference between sit and lift action is due to the difference in their inherent
interaction with the object.

For completeness, we also report this performance as a function of different NA values in Fig. 10
(sit) and Fig. 11 (lift).
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Figure 11: Penetration Score Lifting. We graph the percentage of motion sequences with a
penetration score of less than or equal to 2cm (Y-axis), compared to the number of approach frames,
denoted as NA (X-axis). Our findings reveal that regardless of the value of NA, NIFTY (green)
consistently exhibits a greater proportion of motion sequences with low penetration scores.

Skeleton Distance. This metric uses the anchor poses from our human-object interaction data to
evaluate whether generated motions faithfully reflect interactions from data. We compute a sum over
the per-joint location error (22 joints in our case) between the final generated interaction pose and the
nearest neighbor anchor pose from the training dataset in the joint locations space. We report the
average of this metric across generated motions.

D Supplemental Results

In this section, we include supplemental analyses to support the evaluations in the main paper that
were not included due to space constraints. First, we evaluate the effect of having a parametric
vs a non-parametric guidance field in §D.1. In §D.2, D.3, and D.4 we evaluate the impact of
hyperparameters like the number of samples at inference, number of anchor poses at training, and
a variant of our Object Interaction Field that guides a motion sequence instead of just the final
interaction frame. We also evaluate the difference in performance across different objects.

D.1 Non-Parametric Object Interaction Field

We conducted a comparison between our method and a variant where we replaced the object interac-
tion field with a non-parametric field implemented using the nearest neighbor measure. Specifically,
during the guidance phase, we identified the nearest anchor pose of the object from the training
set and used the difference between this pose and the predicted final pose as the correction. This
correction was then utilized to define our distance field and guide the diffusion model accordingly.

Tab. 3 presents the comparison between this baseline and our method. The skeleton distance metric
can be sensitive to outliers (e.g., a few generations that are far from the object), so we additionally
report % Skel. Dist. ≤ 25cm to get a more robust metric. The results demonstrate that our learning
approach offers a significant improvement of at least 20% in terms of Skeleton Distance ≤ 25 cm, as
well as an additional 10% in terms of Contact IoU. The main paper reports results on the Parametric
approach as our primary model.

D.2 Effect of Number of Samples

In the main paper, we generate 10 guided samples from the diffusion model and use the one with
the best guidance score. We investigate the impact of varying these number of samples in Tab. 4.
We observe that increasing the number of samples leads to improved performance. Particular
improvements occur when transitioning from 1 sample to 5 samples. Since guidance does not always
result in perfect samples, drawing a diverse set gives better chance for a high-quality output. Note
that drawing additional samples can be done efficiently in parallel.
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Table 3: Nearest Neighbor Comparison. We investigate the effect of learning a parametric function
for the Interaction field compared to using the nearest neighbor approach (explained in § D.1). Our
results demonstrate that guiding the diffusion model with our learned field outperforms using a
non-parametric field. Specifically, for the sitting action dataset, our Parametric method surpasses the
Non-Parametric method by 0.09 points in Contact IoU and achieves an 18% improvement in Skel.
Dist ≤ 25cm. Similar trends are observed in the lift action dataset.

Sitting
Guidance Foot % D2O D2O Skel. % Skel. Contact % Pen.
Objective Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑
Non-Parametric 0.44 99.80 0.00 0.31 47.01 0.45 64.67
Parametric 0.47 99.60 0.00 0.54 65.94 0.54 65.40

Lifting
Guidance Foot % D2O D2O Skel. % Skel. Contact % Pen.
Objective Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑
Non-Parametric 0.32 71.12 0.07 0.52 29.88 0.11 63.02
Parametric 0.34 77.69 0.05 0.42 61.55 0.17 69.49

Table 4: Number of Samples Analysis. We study the impact of drawing multiple samples and
guiding them. Drawing more samples helps generate better-quality motions.

Sitting
# Samples Foot % D2O D2O Skel. % Skel. Contact % Pen.

Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑
1 0.66 86.25 7.36 5.72 41.83 0.40 62.59
2 0.56 94.62 4.29 2.36 51.20 0.47 65.47
5 0.47 98.81 0.00 0.67 62.55 0.51 64.72
10 0.47 99.60 0.00 0.54 65.94 0.54 65.40

Lifting
# Samples Foot % D2O D2O Skel. % Skel. Contact % Pen.

Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑
1 0.36 73.11 4.84 2.21 42.03 0.14 64.58
2 0.35 75.70 0.08 1.17 48.80 0.14 67.37
5 0.34 77.29 0.06 0.59 57.57 0.17 67.53
10 0.34 77.69 0.05 0.42 61.55 0.17 69.49

D.3 Effect of Number of Anchors Poses

We also train our Interaction Field (IF) using subsets of motion that yield a limited number of anchor
poses. Specifically, we train the IF using 10%, 25%, and 50% of the available seed anchor poses and
report results in Tab. 5. It is worth noting that Contact IoU and Skeleton Dist metrics are calculated
using all anchor poses in the training set. However, methods trained with only X% of the anchor data
will not be able to generate the complete range of seed poses. Therefore, when comparing methods
trained with different percentages of seed anchor poses, we primarily assess them based on other
metrics, but Contact IoU and Skeleton Dist are still included for completeness.

NIFTY’s performance remains stable even with the limited availability of anchor poses. Looking at
Foot Skating, D2O, and Penetration metrics, there is not a significant decline in performance. The
main paper reports results on 100% data for NIFTY.

D.4 Effect of Number of Input Frames on Interaction Field

In the main paper, our interaction field only considers the last interaction pose, denoted as X̃ . However,
we want to investigate the impact of extending the interaction field to operate on a sequence of frames
rather than just the final interaction frame. To achieve this, we modify our Object Interaction Field to
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Table 5: Number of Anchors at Training. We vary the number anchor poses available for training
the Interaction Field. We see metrics like Foot Skating, D20, and Pen. are relatively stable as
compared to a number of anchors. The evaluation using Skel.Distance and Contact IoU uses all the
anchor poses in the training dataset and this evaluation hence hurts the methods that have access to
the less anchor poses during training. For this particular ablation we consider Foot Skating, D2O,
and Pen. are primary metrics for this ablation.

Sitting
% Anchors Foot % D2O D2O % Pen. Skel. % Skel. Contact

Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ ≤ 2cm ↑ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑
10% 0.55 95.82 0.00 53.02 1.90 12.35 0.27
25 % 0.54 98.01 0.00 53.86 1.28 28.88 0.34
50 % 0.49 98.21 0.00 59.23 0.96 34.86 0.40
100% 0.47 99.60 0.00 65.40 0.54 65.94 0.54

Lifting
% Anchors Foot % D2O D2O % Pen. Skel. % Skel. Contact

Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ ≤ 2cm ↑ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑
10% 0.37 83.27 0.07 50.72 0.98 14.54 0.06
25% 0.37 84.86 0.05 46.24 1.32 22.11 0.07
50% 0.36 78.49 0.06 56.34 1.01 24.90 0.08
100% 0.34 77.69 0.05 69.49 0.42 61.55 0.17

process a sequence of frames from N−m to N , represented as {X̃N−m . . . X̃N}. Using a transformer
encoder, we encode this sequence and obtain a correction vector, denoted as ∆{ ˜XN−m . . . X̃N}. In
Tab. 6, we present preliminary results using this spatiotemporal configuration. The results indicate
that training such an interaction field is feasible but requires a more careful tuning of different
hyperparameters, e.g., the guidance weights. Further investigation into this matter is left for future
research.

Table 6: Multiple Input Frames to Interaction Field We show preliminary results on training an
interaction field that considers multiple frames as input instead of a single frame like in the main
paper. Our results indicate training such a field is feasible the requires further analysis to understand
the effect of different hyperparameters.

Sitting
# Input Foot % D2O D2O Skel. % Skel. Contact % Pen.
Frames Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑
1 0.47 99.60 0.00 0.54 65.94 0.54 65.40
5 0.66 86.25 7.36 5.72 41.83 0.40 62.59
10 0.56 94.62 4.29 2.36 51.20 0.47 65.47
15 0.47 98.81 0.00 0.67 62.55 0.51 64.72

Lifting
# Input Foot % D2O D2O Skel. % Skel. Contact % Pen.
Frames Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑
1 0.34 77.69 0.05 0.42 61.55 0.17 69.49
5 0.35 76.10 0.06 0.37 62.55 0.16 67.28
10 0.34 78.09 0.05 0.46 62.55 0.17 69.64
15 0.34 77.49 0.06 0.36 62.95 0.16 68.64

D.5 Effect of training Interaction Field in the Local Human Frame

Our interaction field is object-centric since it takes in a canonical object point cloud as input. To
test this design choice, we implement the object interaction field in the local frame of the human
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requiring it to understand the spatial positioning of the object w.r.t to the human motion. As shown in
Tab. 7, this leads to a subpar performance across the board on sit and lift actions.

Table 7: Canonical vs. Local Human Frame for Interaction Field Training. We show that training
an Interaction Field in the local human motion frame leads to poor performance as comared to

Sitting
Interaction Foot % D2O D2O Skel. % Skel. Contact % Pen.
Field Frame Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑
Local Human 0.36 40.04 0.86 2.62 0.20 0.04 53.73
Canonical 0.47 99.60 0.00 0.54 65.94 0.54 65.40

Lifting
Interaction Foot % D2O D2O Skel. % Skel. Contact % Pen.
Field Frame Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑
Local Human 0.28 41.83 1.02 2.44 0.60 0.02 43.33
Canonical 0.34 77.69 0.05 0.42 61.55 0.17 69.49

D.6 Performance Breakdown Per-Object

We analyze if the performance of our method is biased towards certain objects by computing the
metrics for about 100 interaction motion samples per object instance. We show the results of this
in Tab. 8. Results indicate that the performance of our method is not dependent on the kind of the
object. For instance, in the case of sitting, the performance for sitting on a “Armchair" vs “Chair" are
close. This demonstrates the flexibility of the NIFTY pipeline to a diverse set of objects.

Table 8: Performance on actions across objects. We see that NIFTY’s performance is stable
across object categories and the framework handles different objects effectively. For instance, the
performance on the Armchair and Chair on sitting action are close signaling the flexibility of NIFTY
pipeline.

Sitting
Object Foot % D2O D2O Skel. % Skel. Contact % Pen.

Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑
Armchair 0.42 99.05 0.00 0.42 90.48 0.44 56.73
Chair 0.51 100.00 0.00 0.17 84.31 0.60 49.02
Stool 0.50 96.59 0.01 0.21 68.18 0.54 72.94
Table 0.46 100.00 0.00 0.28 55.88 0.50 68.63
Yoga Ball 0.53 100.00 0.00 0.22 73.33 0.58 52.38

Lifting
Object Foot % D2O D2O Skel. % Skel. Contact % Pen.

Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑
Chair 0.34 86.82 0.04 0.38 70.54 0.17 59.82
Stool 0.36 77.24 0.06 0.24 65.04 0.13 76.84
Suitcase 0.33 63.85 0.06 0.20 71.54 0.28 65.06
Table 0.29 90.00 0.03 0.64 51.67 0.15 57.41

E Qualitative Results

Motion generation results are best seen as videos on the attached webpage. We also include static
visualizations here in Fig. 12 and Fig. 13. The webpage additionally also shows visualizations ( 10
motions) from our method for every object in our dataset.

22



Cond. VAE Cond. MDM NIFTY Cond. VAE Cond. MDM NIFTY

Figure 12: Comparison Qualitative Motions Sitting. Compared to other baselines, our method
(NIFTY) produces more realistic motions. When examining the motion examples generated by the
baselines, we notice that in all cases where a person approaches an object to sit, either the person
completely misses the object or the sitting pose is not compatible with the object. To better evaluate
these results, please refer to the qualitative videos of these motions in the supplementary.html.

Cond. VAE Cond. MDM NIFTY Cond. VAE Cond. MDM NIFTY

Figure 13: Comparison Qualitative Motions Lifting. NIFTY generates more realistic motions as
compared to the baseline methods. With motions generated using the baseline methods, we see that
the lifting stance is often taken far from the object. To better evaluate these results, please refer to the
qualitative videos of these motions in the supplementary.html file.

F Limitations

Our proposed pipeline demonstrates the ability to achieve human-object interaction results with a
diverse sets of objects while only relying on a limited number of anchor poses. One of the key factors
contributing to the performance of NIFTY is the utilization of a pretrained motion model [33] trained
on the AMASS repository [25]. Our data generation pipeline has the capability to generate motions
and interpolate between existing data in this dataset. However, in cases where a completely novel
and extreme seed anchor pose is provided, such as a headstand, HuMoR would struggle to generate
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reasonable and high-quality motion sequences. Developing more robust motion models which can
handle such poses, would be beneficial.

Furthermore, during the inference stage, it is necessary to draw multiple samples from the diffusion
model and guide them. This approach yields significantly better performance compared to guiding
only a single sample. Exploring research directions that can enhance the stability of the guidance
process would be valuable in consistently generating high-quality interaction motions.
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