
Learning to Predict Scene-Level Implicit 3D from Posed RGBD Data

Nilesh Kulkarni, Linyi Jin, Justin Johnson, David F. Fouhey
University of Michigan

Abstract

We introduce a method that can learn to predict scene-
level implicit functions for 3D reconstruction from posed
RGBD data. At test time, our system maps a previously
unseen RGB image to a 3D reconstruction of a scene via
implicit functions. While implicit functions for 3D recon-
struction have often been tied to meshes, we show that we
can train one using only a set of posed RGBD images. This
setting may help 3D reconstruction unlock the sea of ac-
celerometer+RGBD data that is coming with new phones.
Our system, D2-DRDF, can match and sometimes outper-
form current methods that use mesh supervision and shows
better robustness to sparse data.

1. Introduction
Consider the image in Figure 1. From this ordinary RGB

image, we can understand the complete 3D geometry of the
scene, including the floor and walls behind the chairs. Our
goal is to enable computers to recover this geometry from
a single RGB image. To this end, we present a method that
does so while learning only on posed RGBD images.

The task of reconstructing the full 3D of a scene from a
single previously unseen RGB image has long been known
to be challenging. Early work on full 3D relied on vox-
els [6, 17] or meshes [19], but these representations fail on
scenes due to topology and memory challenges. Implicit
functions (or learning to map each point in R3 to a value like
the distance to the nearest surface) have shown substantial
promise at overcoming these challenges. When conditioned
on an image, these have led to several successful methods.

Unfortunately, the implicit function status quo mainly
ties implicit function reconstruction methods to mesh su-
pervision. This symbiosis has emerged since meshes give
excellent direct supervision. However, methods are limited
to training with an image-aligned mesh that is usually wa-
tertight (and often artist-created) [37, 41, 49] and occasion-
ally non-watertight but professionally-scanned [28, 66].

We present a method, Depth to DRDF (D2-DRDF), that
breaks the implicit-function/mesh connection and can train
an effective single RGB image implicit 3D reconstruction

(Ours) Posed Depth

(Prior work) Explicit

3D Mesh

Inference: Single RGB Image to 3D Training Data

Input

Figure 1. We propose a method, D2-DRDF, that reconstructs
full 3D from a single RGB image. During inference (left), our
method uses implicit functions to reconstruct the complete 3D in-
cluding visible and occluded surfaces (visualized as surface nor-
mals) such as the occluded wall and empty floor. For training,
our method uses only RGBD images and poses, unlike most prior
works that need an explicit and often watertight 3D mesh.

system using a set of RGBD images with known pose. We
envision that being able to entirely skip meshing will enable
the use of vast quantities of lower-quality data from con-
sumers (e.g., from increasingly common consumer phones
with LiDAR scanners and accelerometers) as well as robots.
In addition to permitting training, the bypassing of meshing
may enable adaptation in a new environment on raw data
without needing an expert to ensure mesh acquisition.

Our key insight is that we can use segments of observed
free space in depth maps in other views to constrain dis-
tance functions. We show this using the Directed Ray Dis-
tance Function (DRDF) [28] that has recently shown good
performance in 3D reconstruction using implicit functions
and has the benefit of not needing watertight meshes for
training. Given an input reference view, the DRDF breaks
the problem of predicting the 3D surface into a set of in-
dependent 1D distance functions, each along a ray through
a pixel in the reference view and accounting for only sur-
faces on the ray. Rather than use an ordinary unsigned dis-
tance function, the DRDF signs the distance using the lo-
cation of the camera’s pinhole and the intersections along
the ray. While [28] showed their method could be trained
on non-watertight meshes, their method is still dependent

on meshes. In our paper, we show that the DRDF can be
cleanly supervised using auxiliary views of RGBD obser-
vations and their poses. We derive constraints on the DRDF
that power loss functions for training our system. While the
losses on any one image are insufficient to produce a recon-
struction, they provide a powerful signal when accumulated
across thousands of training views.

We evaluate our method on realistic indoor scene
datasets and compare it with methods that train with full
mesh supervision. Our method is competitive and some-
times even better compared to the best-performing mesh-
supervised method [29] with full, professional captures. As
we degrade scan completeness, our method largely main-
tains its performance while mesh-based methods perform
substantially worse. We conclude by showing that fine-
tuning of our method on a handful of images enables a sim-
ple, effective method for fusing and completing scenes from
a handful of RGBD images.

2. Related Work
Our approach infers a complete 3D scene from a sin-

gle RGB image using implicit functions that are supervised
via posed RGBD scans. This touches on several long-term
goals of 3D computer vision that we discuss below.
Reconstructing Scenes from a Single Image. At test time,
our system produces a full 3D reconstruction from a sin-
gle RGB image, including occluded regions. This means
that our desired output goes beyond 2.5D properties such
as depth [4, 12], surface normals [12, 14, 60], or other
intrinsic-image properties [24, 52]. Works on attempting
to reconstruct complete 3D usually have focused on re-
constructing objects from image by using voxels [6, 17]
or meshes [18, 19], point clouds [13, 33] or CAD mod-
els [23]. These are usually trained on synthetic datasets
like ShapeNet [2] or scene datasets [16, 48, 55] and do
not generalize well to realistic scenes. Another line of
works tries to learn holistic structures [40, 64] or planar sur-
faces [25, 34, 63] from realistic scanned mesh data [1, 8]
Creating realistic mesh based data for scenes requires post-
processing using Poisson surface reconstruction [9, 26]
which leads to deviation from raw captures. Manually
aligning them is expensive hence 3D object-aligned datasets
like [54, 57] are scarce and limited in diversity. Our method
avoids these limitations by directly operating on the raw
captured RGBD data.
Reconstructing Scenes from Posed Scans. There has been
considerable work on using multiview RGBD data at in-
ference time to produce 3D reconstructions, starting with
analytic techniques [7, 9, 22, 30] and now using learn-
ing [21, 56, 59]. We use some similar tools to this com-
munity: for instance, the ray distances we use are known in
this community as a projected distance functions [7]. How-
ever, their works solve a fundamentally different problem

by using posed RGBD data at test time: their goal is to pro-
duce a reconstruction from a set of posed RGBD images
from one particular scene; our goal is to use a large dataset
of posed RGBD data to train a neural network that can map
a new single RGB image to a 3D reconstruction.

Our goal of learning to predict reconstructions from
a single previously unseen image also distinguishes our
work from NeRF [38] and other similar radiance field ap-
proaches [3]. Their goal is to learn a radiance field for a
particular scene from a set of posed scans. There are meth-
ods that try to predict this radiance field from a single im-
age [62]; we compare with a model using similar losses and
find that an objective specialized for 3D works better.
Implicit Functions for 3D Reconstruction. We perform
reconstruction with implicit functions. Implicit functions
have used for shape and scene modeling as level sets [36],
signed distance functions [41], occupancy function [37, 44,
49], distance functions [5, 28, 53] and other modifications
like [61]. Our work has two key distinctions. First, many
approaches [5, 53, 61] fit an implicit function to one shape
(i.e., there is no generalization to new shapes). In contrast,
our work produces reconstructions from previously unseen
RGB images. Second, the methods that predict an implicit
function from a new image [28, 66] assume access to a mesh
at training time. On other hand, our work assumes access
only to posed RGBD data for training.

The most similar work to ours is [28] that also aims to
learn to reconstruct scenes from a single image by training
on realistic data. While [28] shows how to reduce super-
vision requirements by enabling the use of non-watertight
meshes, their method is still limited to mesh supervision.
We show how to use posed RGBD data for supervision in-
stead of using an image-aligned mesh. This substantially
reduces the requirements for collecting training data.

3. Pixel-Aligned 3D Reconstruction & DRDF
We propose a method to predict full 3D scene structure

from a previously unseen RGB image. At inference time,
our method receives a single image with no depth informa-
tion. We refer to this view as the reference view. As output,
the method produces an estimate of a distance function at
each point in a pre-defined set of 3D points. Given this vol-
ume of predicted distances, one can decode the predicted
distance into a set of surfaces: e.g., if the predicted distance
were the unsigned distance to the nearest surface, one could
declare all points with sufficiently small predicted distance
to be surfaces. At training time, our network is given su-
pervision for predicting its distance function. Previously,
supervision been done via a mesh that provides oracle dis-
tance calculations. In §4, we show how to derive supervi-
sion from posed RGBD images at auxiliary views instead.

The approaches in the paper follow pixelNerf [62] for
predicting a distance at a 3D point x. The network accepts

B

𝒙𝒙 ∈ ℝ3

𝒙𝒙 = 𝑧𝑧𝒓𝒓

𝜋𝜋(𝒙𝒙)

Single RGB
Image I

Backbone
Feature

Predefined
grid 𝑠𝑠1𝒓𝒓

Unsigned Ray Distance

Directed Ray Distance

s1 s2 s3

𝑠𝑠2𝒓𝒓 𝑠𝑠3𝒓𝒓

𝑩𝑩[𝜋𝜋 𝒙𝒙]

Predicted
Distance
𝑓𝑓𝜃𝜃(𝒙𝒙, 𝐼𝐼)

Figure 2. Model and DRDF overview. (Left) Given a single
input RGB image I and query point x on a ray r⃗ in a pre-defined
grid, all models, like [62] extract image features at the projection
π(x) of x with a backbone and then predict the distance using
a MLP on the backbone features and a positional encoding of x.
(Right) Given a ray r⃗ through the scene, ray distance functions are
defined as the distance to intersections of the ray with the scene.
This permits analyzing the 3D scene as a set of 1D distances per
ray. The Directed Ray Distance Function is further signed to be
positive before and negative after an intersection.

an image I and 3D point x and makes a prediction fθ(x, I).
As shown in Fig. 2, the network extracts a convolutional
feature from a backbone B at the projection of x, denoted
π(x). The image feature is concatenated to a positional en-
coding of x and put into a MLP to produce the final pre-
diction fθ(x, I). By repeating this inference for a set of 3D
points, the network can infer the full 3D of the scene.
Training. In a conventional setup, the network fθ(x, I) is
trained by obtaining samples from a mesh and directly train-
ing the network via regression. Given a mesh that is co-
aligned with an image, one can obtain an n tuples consist-
ing of an image Ii, 3D point xi and ground-truth distance
di. Then the network is trained by minimizing the empirical
risk 1

n

∑n
i=1 L(fθ(xi, Ii), di) for some loss L like L1.

What Distance Function Should We Predict? There are
multiple distance functions in the literature, and the above
formulation enables predicting any of them. To explain dis-
tinctions, assume we are given a point x at which we want
to evaluate a distance and a scene S ⊆ R3 that we want to
evaluate the distance to.

In a standard distance function, one defines a dis-
tance from a point x to the entire scene S. For in-
stance, the Unsigned Distance Function (UDF) is defined as
minx′∈S ||x−x′||. In a ray-based distance function [7, 28],
the distance is defined from x only to the points in the scene
that lie on the ray r⃗ from the reference view pinhole towards
x. In other words, the ray distance function is defined as the
distance to the intersections of the ray with the scene. For
instance, the Unsigned Ray Distance Function (URDF) is
defined as minx′∈S,x′ on r⃗ ||x− x′||. This definition means
that when predicting the distance at a point x, all of the
points that define the ray distance function project to the
same pixel, π(x), which in turn means that neural networks
do not need as large receptive fields [28].

Since a ray-based distance function is defined only by
scene points that intersect a ray, we can reduce the 3D prob-
lem to a 1D problem, as illustrated in Fig. 2. Rather than
represent each 3D point as a 3D point, we represent it as
the distance along the ray r⃗: the vector x is represented
via a scalar z such that x = zr⃗. Then, if the ith intersec-
tion along the ray is sir⃗ for si ∈ R, the URDF is defined
as the distance to the nearest intersection along that ray, or
dUR(z) = mini=1,...,k |z − si|.
Directed Ray Distance Function. The Directed Ray Dis-
tance Function (DRDF) is a ray distance function that incor-
porates a sign into the URDF. In particular, the DRDF is de-
fined as dDR(z) = dir(z)dUR(z), where the predicate dir(z)
is positive if the nearest intersection is ahead of z along the
ray from the pinhole and negative otherwise. This is pic-
tured in Fig. 2. The presence of both positive and negative
components leads to better behavior under uncertainty [28].
Critical Properties of DRDFs. Two critical properties that
we use to define supervision are that at z, the distance to the
nearest intersection is |dDR(z)| and the nearest intersection
on the ray is at z + dDR(z).

4. Depth-Supervised DRDF Reconstuction
Having introduced the setup in §3, we now explain how

to train a network to predict an image-conditioned DRDF
without access to an underlying mesh but instead access to
posed RGBD images. Concretely, given a point zr⃗, we aim
to define a loss function L that evaluates a network’s pre-
diction of the DRDF fθ((zr⃗), I).

Our key insight is that we can sometimes see this point
zr⃗ in other views and these observations of zr⃗ provide a
constraints on what the value of the DRDF can be. Con-
sider, for instance, the point 3m out from reference view
camera pinhole along the red ray in Fig. 3. If we project
this point into the auxiliary view, we know that its distance
to the camera is closer to auxiliary view’s pinhole than the
depthmap observed at the auxiliary view. Moreover, we can
see that a segment of the ray is visible, starting at the point
s⃗r and ending at the point e⃗r with the ending point e⃗r closer
to zr⃗ than s⃗r is.

We can derive supervision on dDR(z) from the segment
of visible free space observable in the auxiliary view by us-
ing the fact that the nearest intersection at z is |dDR(z)| units
away. Since e is nearer than s, and there are no intersections
in the free space between s and e, we know that there cannot
be an intersection within (e−z) of z. This gives an inequal-
ity that |dDR(z)| ≥ (e − z): otherwise there would be an
intersection in the visible free space. If the ends of the seg-
ment are actual intersections where the ray visibly intersects
an object, we obtain an equality constraint on dDR(z) since
we actually see the nearest intersection. In other cases, the
ray simply disoccludes or is occluded, and we can only have
an inequality. We denote intersection start/end events as I

es z
Occluded Occluded

Auxiliary View + ZoomedReference

s e

s
e

Ref Aux

𝒙𝒙 = 𝑧𝑧𝒓𝒓

𝒙𝒙
s

e

Figure 3. A red ray originates in the reference camera. Given a
point x that is z units along the ray r⃗, we can test if zr⃗ is visible
in an auxiliary view by comparing its projected depth with the
RGBD image. The point z is visible, along with a segment of the
ray from s to e units. Since the distance to the nearest intersection
is |dDR(z)| and we know there are no intersections within (e− z)
units of z, we can constrain that |dDR(z)| ≥ (e− z).

and occlusion start/end events as O and distinguish them
by checking if the projected z-value of the ray in auxiliary
view is sufficiently close to the recorded auxiliary view’s
depthmap value.

4.1. Losses

We now convert the concept of using freespace to con-
strain the DRDF into concrete losses. Recall that our goal
is to evaluate a prediction y = fθ(zr⃗, I) from our network
and that the point at z along r⃗ is in some segment of visible
freespace from s to e along r⃗. Our goal is to penalize the
prediction y. Since there are two start/end event classes (I,
O), there are four segment types: II, IO, OI, and OO.
We show several of these segments in Figure 5.

To assist the loss definitions, we define variables ls =
s− z, and le = e− z which we plot in Fig. 4 as a function
of z. ls is the value of dDR if the closest intersection is at
s, and le is the value of dDR if the closest intersection is at
e. The values ls, le define equalities for intersections and
inequalities for occlusions.
LII: II segment. Given a segment bounded by two inter-
sections, the nearest intersections are known exactly as ls or
le depending on whether z < s+e

2 or not. We penalize the
ℓ1 error between the prediction y and the known DRDF, or
LII(y) = |y − ls| if z < s+e

2 and |y − le| otherwise. This
penalty is is zero only when y is equal to the known DRDF.
LOO: OO segment. Given a segment bounded by two oc-
clusion events, the exact DRDF is not known, but the vis-
ible free space rules out potential values. Since |dDR(z)|
is the distance to the nearest intersection, dDR(z) cannot
lie in [ls, le] since such a value would imply an intersec-
tion in free space between s and e. We penalize incursions
into [ls, le] with a ℓ1 penalty: if we denote halfway be-

s e
-1

-1/2
0

1/2
1

II

s e

IO

s e

OI

s e

OO

Figure 4. Loss functions for a starting s and ending e events
spaced a unit apart. Intersection events (blue ■) define the DRDF
precisely, and we penalize the network from deviating. Occlusion
events (purple) provide bounds that we penalize the network
for violating. We plot ls as a line from the start event and le as a
line from the end event. Loss: 0 1.7

tween ls and le as h, then this can be done as LOO(y) =
max(0, le − h − |y − h|). The resulting penalty is zero if
y ≤ ls or if y ≥ le.
LIO: IO segment. When the segment is bounded by
an intersection event followed by an occlusion event, the
situation is more complex and we define LIO piecewise.
In the first half of the segment(z < s+e

2), dDR is exactly
known, and so we can use an ℓ1 penalty like the II case,
so LIO(y) = |y − ls|. In the second half, there are two
options. If the nearest intersection is s, then dDR(z) = ls.
Otherwise, the nearest intersection is unknown but after e
and so dDR(z) > le must hold (since dDR(z) ≤ le would
imply the existence of an intersection before e). We take
the minimum of errors for the two cases: ℓ1 distance to
ls and a ℓ1 penalty function max(0, le − y), resulting in
LIO(y) = min(max(0, le − y), |y − ls|). This part of the
penalty is zero if either y = ls or if y > le.
LOI: OI segment. The LOI loss is defined symmetrically
to LIO, simply by exchanging the role of s and e. In ad-
dition to occluded regions, this loss occurs in the reference
view up to the depthmap, where a disocclusion into the ref-
erence camera’s view is followed by an intersection.

To assist the network, we add two auxiliary losses that
are true statistically: Lsep represents a prior that surfaces
tend to be separated by distances and Lent captures a prop-
erty of the DRDF that is true in the limit if our observations
are randomly chosen.
Lsep: Minimum Separation Loss. Since the cameras never
sees the insides of objects, there is no incentive to predict in-
side objects. This prevents the generation of zero crossings,
e.g., after the first intersection. To assist the network, we
add a loss Lsep that assumes that surfaces are separated by
a minimum distance unless there is evidence otherwise. We
continue the DRDF’s known value for t = 0.2m before and
after each intersection event to make a continued value c.
We then penalize Lsep(y) = |y − c|, so long as there is no
conflicting free space evidence from another view.
Lent: Sign Entropy Loss. The occlusion-based constraints

R

(c) (b)
(a)

Scene Point Cloud, Cameras, and Ray View (a) View (b) View (c)Reference (R)
Figure 5. A red ray originates from the reference camera and intersects the table before entering the island. This ray is seen by three other
auxiliary views (a, b, c). For each view we show just one of the many segments in that view for readability, showing intersections as blue
■s and occlusions as purple s. The segments in views (a) and (b) are of the form OI, where the O comes from the ray entering the
frustum in (a) and disoccluding in (b). In view (c), we show an OO segment. We discuss the penalties for these segments in §4.1

can be satisfied by making y positive or negative. In theory,
after the first intersection, dDR is positive half of the time.
Learning to produce the signs uniformly with gradient de-
scent is difficult due to the large loss between the acceptable
solutions. To encourage a uniform distribution of signs, we
would like to maximize the entropy of the distribution of
the signs of the predictions (achieved when the distribution
is uniform). Since sign is non-differentiable, we optimize a
differentiable surrogate. Suppose Y is the set of predictions
at points that are occluded in the reference view and H is the
binary entropy H(p) = p log(p) + (1−p) log(1−p). Then
our loss is Lent = H(

∑
y∈Y σ(y/τ)/|Y |) where σ func-

tions like a soft-sign. As seen in the supplement, Lent can
be minimized by distributing Y symmetric about 0. Using
Lent improves the prediction and Scene F1 by 2 points.

4.2. Implementation Details

View Selection. For every candidate auxiliary view we
compute the fraction of visible points in this view that are
occluded in the reference view. Auxiliary views with large
number of such points provide supervision for key occluded
regions in the reference view. We sample up to 20 auxiliary
views per reference image from this set of views.
Sampling Strategy. Given a set of fixed auxiliary views
and a reference view, we sample over 200 rays per input
image with 512 points per ray. We re-balance this set by
sampling 20K points that are visible and 20K points that
are occluded in reference view. We rebalance as most points
are from the region between the camera and the first hit.
Combining segments from different views. We merge in-
formation from multiple posed RGBD images to produce
a concise merged set of non-overlapping segments along
the ray. This prevents double-counting losses (e.g., if a re-
gion of the ray is seen by multiple auxiliary views). We
safely merge segments that provide the same information:
e.g., if one depthmap provides an OO segment that is con-
tained within another depthmap’s II segment, then the OO

segment can be safely dropped since LOO(y) ≤ LII(y).
When segments disagree (e.g., due to inaccurate poses), we
keep the segment with more auxiliary views in agreement.
This approach handles merging Lsep: Lsep is seen by no aux-
iliary views, so any visible freespace overrules it.
Network Architecture. We follow [28] to facilitate fair
comparison. Additionally, we clamp the outputs of our net-
work to be ∈ [−1, 1] by applying a tanh activation and ad-
just the loss to account for this clipping.
Training. We follow a two-stage training procedure. We
first train with only the reference view followed by adding
auxiliary views. In the first stage, we train for 100 epochs
minimizing LOI and Lsep. We then train for 100 epochs
with auxiliary losses, minimizing a sum of the segment
losses LII , LIO, LOI , LOO, and Lsep as well as λLent
with λ set to 0.1 to balance loss scales. We minimize the
loss with AdamW [27, 35] as the optimizer with learning
rate warmup for 0.5% of the iterations followed by cosine
learning rate decay with maximum value 3 × 10−4. Our
models are implemented using PyTorch [42] and visualiza-
tions in this paper use PyTorch3D [31, 47].

5. Experiments
We evaluate our method to address three experimental

questions. First, we examine how training with RGBD data
compares with mesh supervision. Next, we test how RGBD
and mesh supervision compare when one has less complete
scans. Finally, we show that our method can quickly adapt
to multiple posed RGBD inputs.
Metrics. Throughout, we follow [28] and use two met-
rics that evaluate predictions against a ground-truth mesh.
Following [50, 58], these metrics are based on: Accu-
racy/Acc (the fraction of predicted points that are within
t to a ground-truth point), Completeness/Cmp (the frac-
tion of ground-truth points that are within t to a predicted
point), as well as F1 (the harmonic mean of Accuracy and
Completeness). t for both Acc and Cmp is 0.5m. In

Image Selected Crops D2-DRDF Ground TruthMesh DRDFDensity Field

Figure 6. Comparison with baselines. 3D outputs generated by all methods trained on Matterport3D. We color the first intersection with
image colors and occluded intersections with computed surface normals. We highlight regions of interest in the reconstructions in selected
crops. D2-DRDF achieves results on par with Mesh DRDF while the density fields baselines fails to model the occluded parts faithfully.
In row 1, our method recovers the back of sofa, and a hidden room behind the hallway in row 2. Surface Normal Map

(Scene Acc/Cmp/F1), we evaluate the predicted mesh of
the full scene against the ground-truth, using 10K samples
per mesh. In (Ray Occ. Acc/Cmp/F1), We evaluate the per-
formance on occluded points, evaluating per-ray and then
averaging. We define occluded points for both the ground
truth and prediction as any surface past the first intersec-
tion. Ray Occ. is a challenging metric as mistakes in one
ray cannot be accounted for in another ray.
Datasets. We use Matterport3D [1] as our primary dataset
following an identical setup to [29]. We choose Matter-
port3D because it has substantial occluded geometry (un-
like ScanNet [8]) and was captured by a real scanner (unlike
3DFront [15], which is synthetic). We note that we use the
raw images captured by the scanner rather than re-renders.
We follow the split from [28], which splits train/val/test by
house into 60/15/15 houses. After filtering and selecting
images, there are 15K/1K/1K input images for each split.

5.1. Mesh Prediction Results

Baselines. Our primary point of comparison is (1) Mesh
DRDF [28], which learns to predict the DRDF from direct
mesh supervision. For context, we also report the baselines
from [28] and summarize them: (2) LDI [51] predicts a
set of 4 layered depthmaps, where the first represents the
depth and the next three represent occluded intersections;
(3) UDF [5] predicts an unsigned scene distance function;
(4) URDF [5] predicts an unsigned ray distance function;
(5) ORF predicts an occupancy function, or whether the
surface is within a fixed distance. We note that for each of
these approaches, there are a number of variants (e.g., of
finding intersections in a URDF along a ray). We report
the highest performance reported by [28], who document
extensive and detailed tuning of these baselines.

Our final baseline, (6) Density Field [62] tests the value
of predicting a DRDF compared to a density. Like our

Image GT D2-DRDF

Figure 7. Novels Views Comparison between D2-DRDF and
Ground Truth(GT) from novel views. Rows 1, 2 are from unseen
images on Matterport3D [1] and 3,4 from Omnidata [11]. Our
method trained with only RGBD data recovers occluded empty
floors, kitchen cabinets (row 1) and sides of kitchen island(row 3).

method, Density Field only uses posed RGBD data for su-
pervision and does not depend on mesh supervision. We
adapt pixelNerf [62] to our setting, modifying the imple-
mentation from [45] to permit training from a single ref-
erence view as input and multiple auxiliary views for su-

Table 1. Matterport3D [1] Acc/Comp/F1Score. We separate
methods that use ground-truth mesh from ones using posed RGBD
by a horizontal line. D2-DRDF is comparable to the best Mesh
supervised method DRDF, and is better than all other mesh based
methods on Scene and Ray F1 scores.

Scene Ray
Method Acc Cmp F1 Acc Cmp F1

LDI [51] 66.2 72.4 67.4 13.9 42.8 19.3
UDF [5] 58.7 76.0 64.7 15.5 23.0 16.6

Mesh ORF 73.4 69.4 69.6 26.2 20.5 21.6
URDF [5] 74.5 67.1 68.7 24.9 20.6 20.7
DRDF [28] 75.4 72.0 71.9 28.4 30.0 27.3

D2-DRDF 73.7 73.5 72.1 28.2 22.6 25.1
Density Field [62] 45.8 80.2 57.5 24.8 14.0 17.9

pervision. In addition to the standard color loss, we super-
vised the network to match the ground-truth auxiliary depth
RGBD depth as in [10]. At inference time, we integrate
along the ray to decode a set of intersections as in [10].
Qualitative Results. We show qualitative results from our
method and the baselines in Fig 6. Our methods outputs are
comparable to the outputs of the mesh based DRDF that is
trained with much stronger supervision. The density fields
approach struggles to model the occluded hits and has a lots
of floating blobs in the empty space. We show additional
results from D2-DRDF in Fig. 7 where it recovers occlude
kitchen cabinets, empty floor space behind kitchen island,
sides of kitchen island, and hollow bed.
Quantitative Results. We report results in Table 1. With-
out access to ground-truth meshes, our approach slightly
outperforms Mesh-based DRDF on Scene F1 and ap-
proaches its performance on Ray Occ. Our approach
matches it in accuracy (i.e., the fraction of predicted points
that are correct) but does worse on completeness. We hy-
pothesize that this is due to mesh-based techniques ob-
taining supervision in adjacent rooms. Nonetheless, our
approach outperforms all other baselines besides mesh-
supervised DRDF by a large margin (25.1 vs 21.6 F1). D2-
DRDF has substantially higher performance compared to
the Density Field baseline. This shows that density fields
representation has difficulties in learning from a supervision
of less views with large occlusions.

5.2. Training on Incomplete Data

One advantage to using posed RGBD data compared to
meshes is that it opens the door to learning from more data
that is of lower quality. One can use lots of lower-quality
scene captures that would produce poor meshes due to sub-
stantial amounts of incomplete data. In the case of direct
mesh supervision methods, having an incomplete mesh may
lead to incorrect signals for a mesh-based system: for in-
stance, the network may learn to predict that an intersec-

(a)100% Im / 100% M
A: 122m2

(b) 50% Im. / 60% M
A: 74m2

(c) 25% Im. / 50% M
A: 62m2

(d) 100% Im. / 100% M
A: 76m2

(e) 25% Im. / 92% M
A: 71.42m2

(f) 3% Im. /88% M
A: 68.91m2

M
at

te
rp

or
t 3

D
O

m
ni

D
at

a

Figure 8. Mesh Degradation We show examples of how drop in
images creates holes, reduces mesh area available for supervision.
In (c), after retaining ≈ 1

4
of image data, we only lose ≈ 1

2
the mesh

area. Im.: Image Coverage, M: Mesh Coverage, A: Area

tion does not exist simply because it was not scanned. In
contrast, for D2-DRDF, missing data simply increases the
fraction of points without supervision. We now test this hy-
pothesis by reducing the number of views in datasets.
Optimistic Degradation Setup (ODS). We simulate the
degradation of dataset collection by subsampling views. To
avoid conflating errors in training with suboptimal meshing
with incomplete data, we optimistically degrade the meshes
to provide an upper bound on supervision. We assume that
the mesh with fewer views is identical to the mesh from all
views, minus triangles with no vertices in any view. We
show ODS mesh examples in Fig. 8.

We degrade meshes by selecting 1/2i views per dataset
for an increasing i. While reducing the views linearly im-
pacts the sample count for RGBD training setup, it has a
non-linear impact on mesh completeness since a triangle
is removed only if all of the views seeing it are removed
(which is unlikely until most views are removed). For any
given image retention (Im.) %, mesh coverage (M) % de-
grades less giving an edge to mesh based methods.

Usually, when dealing with limited data, we use a
method called Screened Poisson Reconstruction(SPR) [26].
However, SPR does not perform well when there is not
enough data available. To avoid conflating errors caused
by poor quality inadequate meshing, we establish an up-
per limit on the performance of methods that rely on direct
supervision. Our ODS strategy is much better than using
SPR, but it cannot be used in real-world scenarios. We em-
ploy Open3D’s[65]’s SPR with hyper-parameters similar to
[1] to reconstruct meshes.
Datasets. We evaluate on Matterport3D [1] and apply our
method as is without any modifications on OmniData [11]
which has a substantially different image view distribution,
more rooms and more floors compared to Matterport3D.
Quantitative Results. We compare models trained on dif-
ferent amount of data available for supervision by using
metrics defined in §5.1. In Tab. 2 we compare against the

Table 2. Robustness to Sparse Data Performance on partial
data on Matterport3D[1]. We compare (SPR and ODS) trained
DRDF [28] which uses mesh supervision and (Depth) Depth-
based DRDF (ours), which uses posed RGBD supervision. In each
row, we degrade the training data and report test performance of
the trained model. At 100% data there is no M degradation for
ODS or SPR. Our approach is more robust to drop in Im.: at 50%
view sparsity (Im.), models using ODS or SPR suffer substantial
performance drops. Scene F1 drop by 16.3 for SPR; 3.5 for ODS;
2.1 for Depth (ours).

ODS Scene F1 Ray Occ F1
Im. % M % SPR ODS Depth SPR ODS Depth

100 100 71.9 71.9 72.1 27.3 27.3 25.1
50 56 55.6 68.4 70.0 21.4 23.6 24.4
25 43 56.8 66.8 70.0 21.5 21.2 24.9

Table 3. Robustness to Sparse Data Performance of ODS (mesh)
and Depth (ours) based DRDF on partial Omnidata [11] following
the same setup as Table 2. RGBD-based training is substantially
more robust to partial data.

ODS Scene F1 Ray Occ F1
Im. % M % SPR ODS Depth SPR ODS Depth

25 86 63.9 77.2 72.8 26.2 40.3 32.1
12.5 83 62.8 75.3 70.9 26.1 37.1. 29.3
6.3 78 40.9 73.4 71.8 5.7 32.6 28.1
3 69 42.9 69.8 70.4 3.8 20.3 26.7

Mesh-DRDF trained ODS & SPR meshes. For any given
view sampling level, the supervised M % area is high, re-
sulting in stronger supervision for methods trained with
ODS than RGBD. However, on Matterport3D, our method
outperforms DRDF on all metrics at 25% Im. and outper-
forms all other baseline methods in Scene F1 at 100% Im..

In Tab. 3 we show robustness trends on OmniData. At
25% Im./ 86% M completion, mesh-based does better. We
hypothesize this gain is due to better handling of estimates
beyond the room. However, as Im. reduces mesh degrades,
resulting steep fall for ODS DRDF: with 3% Im./ 69% M,
MeshDRDF’s Ray Occ F1 drops by 20 points; ours is re-
duced by just 5.4. Moreover for SPR DRDF, at low Im. val-
ues, meshing performs dismally and the poor meshing per-
formance translates into poor reconstruction performance:
at 6% Im., training DRDF on SPR meshes produces a Ray
F1 of just 5.7% and a scene F1 of 40.9%.

5.3. Adapting With Multiple Inputs

Since D2-DRDF can directly train on posed RGBD im-
ages, this enables test-time adaptation given a few auxiliary
posed RGBD images. We start with the pre-trained model
from §5.1 and then fine-tune for 500 iterations.
Dataset and Metrics. We generate 300 quadruplets of
scenes consisting of a reference view as well as three auxil-
iary RGBD images with poses. These three auxiliary views

Auxiliary ViewsReference

D2-DRDFD2-DRDF + AdaptGround Truth

Figure 9. Adaptation to a few images We optimize our pre-
trained model on the three auxiliary views (yellow) and a reference
view (orange). The optimization lets the model fix reconstructions
in occluded regions (e.g. bedside wall) as seen D2-DRDF + Adapt.

Table 4. Scene, Ray F1 Score for Adaptation Using D2-DRDF
for adaptation produces better reconstructions that outperform the
baselines by a large margin on Ray Occ F1 scores (by 8.9 points).

Scene Ray
Method Acc Cmp F1 Acc Cmp F1

D2-DRDF (Full) 79.2 76.4 76.0 36.2 33.6 34.9
D2-DRDF (Depth) 78.4 70.5 72.5 33.0 21.4 26.0
D2-DRDF (Scratch) 66.4 70.3 66.0 23.7 27.4 25.4
Density Field [62] 77.3 74.9 74.6 12.8 9.9 11.2

are randomly sampled from views that overlap with oc-
cluded parts of the reference view (see supp.). We evaluate
inferred 3D using the metrics as §5.1.
Baselines. The baselines from §5.1 cannot operate in these
settings, since they require meshes for training. Therefore
we compare against a number of depth-map-based methods
as well as ablations to give context to our results: (1) Den-
sity Field fine-tunes the density field baseline model from
§5.1; (2) Depth-Pretrained fine-tunes D2-DRDF starting
with the model from the first stage of training; (3) Scratch
Training fine-tunes D2-DRDF from scratch.
Results. Our loss and penalty formulations lend themselves
well to test-time adaptation as shown in Fig. 9. After adap-
tation, D2-DRDF can resolve uncertainties like the corner
of the bed and wall. Table 4 shows D2-DRDF does the best.

6. Conclusion

We presented a method for learning to predict 3D from a
single image using implicit functions while requiring only
posed RGBD supervision. We believe our method can un-
lock new avenues with posed RGBD data becoming avail-
able from both consumers as well as robotic agents.
Acknowledgments. We thank our colleagues for the wonderful
discussions on the project (in alphabetical order). Richard Hig-
gins, Sarah Jabour, Dandan Shan, Karan Desai, Mohammed Ba-
nani, and Chris Rockwell for feedback. Shengyi Qian for the help
with ViewSeg code used to implement the PixelNeRF baseline.

Toyota Research Institute (“TRI”) provided funds to assist the au-
thors with their research but this article solely reflects the opinions
and conclusions of its authors and not TRI or any Toyota entity.

References
[1] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-

ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d
data in indoor environments. 3DV, 2017. 2, 6, 7, 8, 14, 15

[2] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 2

[3] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. ECCV, 2022. 2

[4] Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-
image depth perception in the wild. NeurIPS, 2016. 2

[5] Julian Chibane, Aymen Mir, and Gerard Pons-Moll. Neural
unsigned distance fields for implicit function learning. In
NeurIPS, 2020. 2, 6, 7

[6] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach for
single and multi-view 3d object reconstruction. In ECCV,
2016. 1, 2

[7] Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, pages 303–312, 1996. 2, 3

[8] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, 2017. 2, 6

[9] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram
Izadi, and Christian Theobalt. Bundlefusion: Real-time
globally consistent 3d reconstruction using on-the-fly sur-
face reintegration. ACM Transactions on Graphics (ToG),
36(4):1, 2017. 2

[10] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ra-
manan. Depth-supervised nerf: Fewer views and faster train-
ing for free. In CVPR, 2022. 7

[11] Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir
Zamir. Omnidata: A scalable pipeline for making multi-task
mid-level vision datasets from 3d scans. In ICCV, 2021. 6,
7, 8, 15, 19, 20

[12] David Eigen and Rob Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale convo-
lutional architecture. ICCV, 2015. 2

[13] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In CVPR, 2017. 2

[14] David F Fouhey, Abhinav Gupta, and Martial Hebert. Data-
driven 3d primitives for single image understanding. In
ICCV, 2013. 2

[15] Huan Fu, Bowen Cai, Lin Gao, Lingxiao Zhang, Cao Li,
Qixun Zeng, Chengyue Sun, Yiyun Fei, Yu Zheng, Ying Li,
Yi Liu, Peng Liu, Lin Ma, Le Weng, Xiaohang Hu, Xin Ma,
Qian Qian, Rongfei Jia, Binqiang Zhao, and Hao Zhang. 3d-

front: 3d furnished rooms with layouts and semantics. ICCV,
2021. 6

[16] Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming
Wang, Cao Li, Qixun Zeng, Chengyue Sun, Rongfei Jia, Bin-
qiang Zhao, et al. 3d-front: 3d furnished rooms with layouts
and semantics. In ICCV, 2021. 2

[17] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Ab-
hinav Gupta. Learning a predictable and generative vector
representation for objects. In ECCV. Springer, 2016. 1, 2

[18] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh
r-cnn. In ICCV, 2019. 2

[19] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
proach to learning 3d surface generation. In CVPR, 2018. 1,
2

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 12

[21] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra
Ahuja, and Jia-Bin Huang. Deepmvs: Learning multi-view
stereopsis. In CVPR, 2018. 2

[22] Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
et al. Kinectfusion: real-time 3d reconstruction and inter-
action using a moving depth camera. In Proceedings of the
24th annual ACM symposium on User interface software and
technology, pages 559–568, 2011. 2

[23] Hamid Izadinia, Qi Shan, and Steven M Seitz. Im2cad. In
CVPR, 2017. 2

[24] Michael Janner, Jiajun Wu, Tejas D Kulkarni, Ilker Yildirim,
and Josh Tenenbaum. Self-supervised intrinsic image de-
composition. NeurIPS, 2017. 2

[25] Ziyu Jiang, Buyu Liu, Samuel Schulter, Zhangyang Wang,
and Manmohan Chandraker. Peek-a-boo: Occlusion reason-
ing in indoor scenes with plane representations. In CVPR,
2020. 2

[26] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of the fourth
Eurographics symposium on Geometry processing, 2006. 2,
7, 14

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. ICLR, 2015. 5

[28] Nilesh Kulkarni, Justin Johnson, and David F. Fouhey. Di-
rected ray distance function for 3d scene reconstruction. In
ECCV, 2022. 1, 2, 3, 5, 6, 7, 8, 12

[29] Nilesh Kulkarni, Ishan Misra, Shubham Tulsiani, and Abhi-
nav Gupta. 3d-relnet: Joint object and relational network for
3d prediction. In ICCV, 2019. 2, 6

[30] Kiriakos N Kutulakos and Steven M Seitz. A theory of shape
by space carving. IJCV, 2000. 2

[31] Christoph Lassner and Michael Zollhöfer. Pulsar: Efficient
sphere-based neural rendering. arXiv:2004.07484, 2020. 5

[32] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In CVPR, 2018.
12

[33] Chen-Hsuan Lin, Chen Kong, and Simon Lucey. Learning
efficient point cloud generation for dense 3d object recon-
struction. In AAAI, volume 32, 2018. 2

[34] Chen Liu, Kihwan Kim, Jinwei Gu, Yasutaka Furukawa, and
Jan Kautz. Planercnn: 3d plane detection and reconstruction
from a single image. In CVPR, 2019. 2

[35] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. ICLR, 2019. 5

[36] Ravi Malladi, James A Sethian, and Baba C Vemuri. Shape
modeling with front propagation: A level set approach.
TPAMI, 1995. 2

[37] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR,
2019. 1, 2

[38] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. arXiv preprint arXiv:2003.08934, 2020. 2

[39] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey
Tumanov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng
Yang, William Paul, Michael I Jordan, et al. Ray: A dis-
tributed framework for emerging {AI} applications. In 13th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 18), pages 561–577, 2018. 12

[40] Yinyu Nie, Xiaoguang Han, Shihui Guo, Yujian Zheng, Jian
Chang, and Jian Jun Zhang. Total3dunderstanding: Joint lay-
out, object pose and mesh reconstruction for indoor scenes
from a single image. In CVPR, 2020. 2

[41] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In CVPR, 2019. 1, 2

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS. 2019. 5

[43] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703, 2019. 12

[44] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In ECCV, 2020. 2

[45] Shengyi Qian, Alexander Kirillov, Nikhila Ravi, Deven-
dra Singh Chaplot, Justin Johnson, David F Fouhey, and
Georgia Gkioxari. Recognizing scenes from novel view-
points. arXiv preprint arXiv:2112.01520, 2021. 6

[46] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI), 2020. 12

[47] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 5

[48] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit
Kumar, Miguel Angel Bautista, Nathan Paczan, Russ Webb,
and Joshua M. Susskind. Hypersim: A photorealistic syn-
thetic dataset for holistic indoor scene understanding. In
ICCV, 2021. 2

[49] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In ICCV, 2019. 1, 2

[50] Steven M Seitz, Brian Curless, James Diebel, Daniel
Scharstein, and Richard Szeliski. A comparison and eval-
uation of multi-view stereo reconstruction algorithms. In
CVPR, 2006. 5

[51] Jonathan Shade, Steven Gortler, Li-wei He, and Richard
Szeliski. Layered depth images. In Proceedings of the
25th annual conference on Computer graphics and interac-
tive techniques, pages 231–242, 1998. 6, 7

[52] Jian Shi, Yue Dong, Hao Su, and Stella X Yu. Learning non-
lambertian object intrinsics across shapenet categories. In
CVPR, 2017. 2

[53] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. NeurIPS, 2020. 2

[54] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.
Sun rgb-d: A rgb-d scene understanding benchmark suite. In
CVPR, 2015. 2

[55] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Mano-
lis Savva, and Thomas Funkhouser. Semantic scene comple-
tion from a single depth image. CVPR, 2017. 2

[56] Jiaming Sun, Yiming Xie, Linghao Chen, Xiaowei Zhou, and
Hujun Bao. Neuralrecon: Real-time coherent 3d reconstruc-
tion from monocular video. In CVPR, 2021. 2

[57] Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong
Zhang, Chengkai Zhang, Tianfan Xue, Joshua B Tenenbaum,
and William T Freeman. Pix3d: Dataset and methods for
single-image 3d shape modeling. In CVPR, 2018. 2

[58] Maxim Tatarchenko, Stephan R Richter, René Ranftl,
Zhuwen Li, Vladlen Koltun, and Thomas Brox. What do
single-view 3d reconstruction networks learn? In CVPR,
2019. 5

[59] Kaixuan Wang and Shaojie Shen. Mvdepthnet: Real-time
multiview depth estimation neural network. In 3DV, 2018. 2

[60] X. Wang, David F. Fouhey, and A. Gupta. Designing deep
networks for surface normal estimation. In CVPR, 2015. 2

[61] Jianglong Ye, Yuntao Chen, Naiyan Wang, and Xiaolong
Wang. Gifs: Neural implicit function for general shape rep-
resentation. In CVPR, 2022. 2

[62] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In CVPR, 2021. 2, 3, 6, 7, 8

[63] Zehao Yu, Jia Zheng, Dongze Lian, Zihan Zhou, and
Shenghua Gao. Single-image piece-wise planar 3d recon-
struction via associative embedding. In CVPR, 2019. 2, 12

[64] Cheng Zhang, Zhaopeng Cui, Yinda Zhang, Bing Zeng,
Marc Pollefeys, and Shuaicheng Liu. Holistic 3d scene un-
derstanding from a single image with implicit representation.
In CVPR, 2021. 2

[65] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,

2018. 7, 14, 15
[66] Shizhan Zhu, Sayna Ebrahimi, Angjoo Kanazawa, and

Trevor Darrell. Differentiable gradient sampling for learn-
ing implicit 3d scene reconstructions from a single image. In
ICLE, 2022. 1, 2

A. Overview

We discuss crucial details required to implement the results
from our paper in §B. Then we discuss the under constrained na-
ture of our segment penalties and how multiple DRDFs satisfy
them in §C. In §D we discuss the details of the entropy like loss
function followed by additional evaluations and qualitative results
in §E in §F respectively.

B. Implementation Details

We provide additional implementation details for replicating
the results in this paper. We will the release code.

B.1. Data Pre-processing

We select up to 20 auxiliary views for every reference view
from the complete dataset. These auxiliary views are preprocessed
along with reference view to create a cached dataset of ray signa-
ture to allow faster training. We get supervision for occluded seg-
ments of the ray if there is an occluded intersection or if the part of
occluded segment is observed from an auxiliary view. Therefore,
it is important to sample points from the auxiliary depth map and
then convert these points to full rays in the reference view. Such
a strategy guarantees that we create rays with more than one OI
segment (the first hit) to train our models. After pre-computation
using this strategy we have access to a large repository of rays
originating from every reference image.
Detecting Events & Noise in Depth data. The process of detect-
ing events and creating segments along the ray needs to be robust
so as to not allow bad segments. It is critical that we do not al-
low erroneous intersections to jump into the ray signature due to
missing data. Rays originating from the camera are terminated at
8m from the camera as this is maximum extent of the scene we
reconstruct (for fair comparison to baselines [28]). We linearly
sample 512 points along this ray and perform event detection for
these points.

Given an auxiliary view (π) and the a ray, r⃗ for every point,
x, we compute the z coordinate in the view frame of the auxiliary
view. We also record the depth map value at the projection π(x).
We sweep along the ray and detect sign changes for difference
between the z-coordinate and the recorded depth. A smooth sign
change from +ve to −ve or vice versa indicates that there is an
intersection at the sign change that is observed from this auxiliary
view. However, a sign change with a discontinuity leads to an
occlusion event implying the ray entering or exiting the auxiliary
view. Since depth data is noisy, for a cluster of missing depth
values we label the start as an exit occlusion event and the end as
an entry occlusion event (if the ray becomes visible).
Conflicting segments. Detecting events using multiple auxiliary
views leads a large set of segments along a particular ray. In or-
der to get an unified segment we drop redundant information e.g.
we drop an OO that is subsumed by an II. Our event detection
system is conservative in detecting segments and in case of con-
flicts we only keep the ray segment that has evidence from most
auxiliary views. Since we are training on a large dataset of scene
it is convenient to only keep segments that are accurate given the
evidence from auxiliary views.

B.2. Training
We train our networks in two stages. During the first stage we

only train the network to predict the DRDF values until the first in-
tersection. This first stage allows the second stage of the learning
process to learn about the occluded scene geometry. Such strategy
also lends itself well to use networks bootstrapped on large col-
lection of paired RGB and Depth data such as [32, 46]. We train
for half the number of epochs in the first stage and then train on
the whole scene including occluded points for the rest half of the
epochs (100 + 100).
Architecture. Our architecture is similar to pixelNerf [28, 63].
We use a pre-trained version of ResNet-34 [20] from PyTorch [43],
and a 5-Layer MLP with ResNet style skip connections. Our final
activation for the last layer is tanh and it bounds the predicted val-
ues in range [−1, 1]. The MLP takes input the positional embed-
ding (36 dimensions) and pyramid of image features at different
spatial resolutions (512 dimensions). Each of the 5 hidden layer
of our MLP has 1024 hidden units and the final layer predicts a
single scalar value that is the directed ray distance.
Sampling Strategy. In a given reference view with access to only
a sparse set of few auxiliary views we do not observe large sec-
tions of the occluded geometry. For any given ray in the reference
view the predominant segments are the one that are visible in the
reference view that capture the first hit. We address this bias in
the type of segments by re-balancing the points sampled on all the
segments. We randomly sample up to 400 rays from our prepro-
cessed dataset. For every ray we create linearly spaced 512 points
up to 8m. We then re-sample points from this large collection of
400 × 512 points to keep only 50% points that are visible in the
reference view (i.e. before the first hit) and 50% points that are
occluded from the reference view.

B.3. Inference
At inference we consider the input image and a predefined grid

in the view frame of size H × W × D. This grid has H × W
pixel aligned rays. For each ray we decode the ray to a set of
intersections along the ray. We speed up parallel decoding for all
the rays with the Ray Library [39]. We use H = W = D = 128.

C. D2-DRDF Penalty Functions
The penalty functions discussed in §4 provide a sparse set of

supervisions for our network and now we demonstrate that for a
particular ray in a simplified setting. Consider a ray with following
segments OI, OO, II in order. The O events provide a weaker
constraints as compared to the I. Throughout whenever there is an
I it leads to equality constraints in points on the segment closer to
the event, while an O results in an inequality constraint. In Fig 10
(top-left) we show the complete penalty function combined across
various segments for points along the ray. We show that I events
lead to a singular solution (shown as a single white line) while
O events lead to multiple regions of zero penalty (white regions).
In Fig 10 we also show multiple possible DRDFs that satisfy the
penalty function but are not the ones we want. It is key to see that
all the DRDF (1-5)are exactly the same for points on the ray (z)
that are closest to the I while vary largely for points close to the
O.

O I O O I I
Points along the ray z

-1

-1/2

0

1/2

1 Segment Penalty

O I O O I I
Points along the ray z

DRDF-1

O I O O I I
Points along the ray z

DRDF-2

O I O O I I
Points along the ray z

-1

-1/2

0

1/2

1 DRDF-3

O I O O I I
Points along the ray z

DRDF-4

O I O O I I
Points along the ray z

DRDF-5

Figure 10. Under constrained penalty segments . We consider a ray that has three segments OI, OO, II and goes from left to right.
On the first plot we show penalty segments for possible DRDF values ∈ [−1, 1] on the Y-axis vs points along the ray z. The regions in
white have zero penalty and red regions have a high value. . For any particular z these segments give us partial information on the possible
values of DRDF for certain parts of the ray. We now show 5 different possible DRDF functions that all satisfy the penalty plot on top-right.
Since some of our segment penalties have inequality constraints there are multiple values possible (OO). All DRDFs (1-5) match exactly
in regions close to an intersection where we have equality constraints (e.g. II segment). For regions along the ray not bound by segments
DRDF is unconstrained. Penalty legend 0 1.7

However when we train our network our model observers lot
of sample of rays from varied different rays, this access to large
scale data encourages a singular DRDF that explains all the events
while also being simple when dealing with inequality constraint
(occam’s razor). Since neural networks are continuous functions
they discourage predictions with high frequency. The key ideas
that fuel our approach is not events on a single ray but using data
across multiple rays and scenes. Since we use a single neural net-
work to fit to our train data it allows us to learn a bigger set of
priors which are useful to create a final DRDF and move away
from all possible solutions to these given constraints. Now, in §D
we discuss another regularizer we use to encourage our network to
predict sometimes positive DRDF values and sometimes negative
DRDF values for occluded segment.

D. Entropy-Like Loss
In our loss function we use an entropy loss (Lent) to encour-

age the predicted DRDFs from segment penalties to behave like
DRDFs learnt with mesh supervision. One of the key properties
of DRDF is the number of samples that have a negative DRDF
value is equal to number of samples that have a positive value.
This statistic is only true when we are looking at a dataset of rays.
Moreover, since the OO imposes an penalty function that discour-
ages changing sign hence reduces diversity, our entropy like loss
allows the network to easily adapt to this and jump across large
loss values. Below we show some analysis on the behavior of the
entropy loss.

Given a prediction y ∈ Rn over n values, we optimize a differ-

entiable surrogate for the binary entropy of the signs of the predic-
tion. This objective aims to ensure that the predictions are equally
negative and positive. Both our ideal objective and surrogate ob-
jective can be minimized in the limit as n → ∞ by sampling y
from a symmetric distribution centered on zero (e.g., a uniform
one over [−1, 1]).

Ideally, we would like to minimize the negative of the entropy
of the signs, or

p log(p) + (1−p) log(1−p) with p =
1

N

N∑
i=1

H(yi), (1)

where H(·) : R → {0, 1} is the Heaviside function mapping a
number to its sign. Equation 1 has a unique minimum in p, namely
1
2

, which is achieved when exactly half of the components of y are
positive and half are negative. The requirement of equal positives
and negatives can be satisfied in a large variety of ways.

The Heaviside function is, of course, not differentiable, and so
we use a differentiable surrogate and minimize

p log(p) + (1−p) log(1−p) with p =
1

N

N∑
i=1

σ(yi), (2)

where σ(·) : R → [0, 1] is a sigmoid function with a temper-
ature. The sigmoid functions like a soft sign function where 0
corresponds to negative values and 1 to positive values. Just like
the binary one, Equation 2 has a single global minimum in p at 1

2

and a family of minimums in y.

One minimum in y is created by generating symmetric values,
where each component in y has a unique corresponding compo-
nent with the same magnitude but flipped sign, e.g., if there is a
0.75m prediction, then there must also be a −0.75m prediction.
More generally, suppose if n is even, and we order y such that
yi = −yn/2+i for all 1 ≤ i < n

2
. Then (σ(yi) + σ(yn/2+i)) =

1, and so p = 1
N

∑n/2
i=1(σ(yi) + σ(yn/2+i)) = 1

2
. This setting

would happen in the limit if the components of y were symmetri-
cally distributed over an interval [−a, a] for a ∈ R+.

Of course, the surrogate function we minimizes permits other
solutions that balance out the right way. For instance, given on
minimizer y one can generate another minimizer by adding a δ1
in one component and adding an appropriate δ2 in another (i.e.,
y′
i = yi + δi). This entails picking δ1 and δ2 such that

σ(y1 + δ1)− σ(y1) = − (σ(y2 + δ2)− σ(y2)) , (3)

or that sum remains unmodified. Given a chosen a chosen δ1, some
algebra reveals that

δ2 = σ−1 (σ(y1)− σ(y1 + δ1) + σ(y2))− y2. (4)

Thus, a whole family of minimizers that do not match pairs of
samples or have balanced signs is possible. However, the entropy-
like loss is not the only function minimized, and the network must
also minimize the data term.

E. Quantitative Evaluations
In addition to F1 scores reported in the main paper we pro-

vide the complete results in Table 5, 7 for behavior of D2-DRDF
under different levels of sparse data. Please refer to §5.2 of the
main paper for additional details on evaluation, and dataset cre-
ation. With decreasing amount of data, the Mesh DRDF baseline
suffers a significant drop in completion (cmp) score on both scene
and ray based metrics. This leads to precipitous drop in perfor-
mance for F1 score (-6.1 points) as compared to D2-DRDF which
only see a drop of (-0.2 points). We observe similar trends in Table
7 on OmniData.

As described in the main paper, in practice in sparse view set-
tings we have to leverage mesh reconstruction algorithms like SPR
to generated meshes from posed RGBD data. Training methods
with this data leads to a subpar performance w.r.t to ODS mesh
data. For completeness, we provide the full evaluation in Tab. 6,
8 for methods trained with SPR mesh data.

Table 5. Matterport3D: Robustness to sparse data vs ODS
DRDF. Scene Acc/Cmp/F1 and Ray Acc/Cmp/F1 scores on differ-
ent amounts of Matterport3D dataset. ODS DRDF’s Cmp scores
drop precipitously result in loss of F1 score. D2-DRDF is more
stable and robust to amount of data.

Scene Ray
ODS DRDF D2-DRDF ODS DRDF D2-DRDF

Im. % M % Acc Cmp F1 Acc Cmp F1 Acc Cmp F1 Acc Cmp F1

100 100 75.4 72 71.9 73.7 73.5 72.1 28.4 30.0 27.3 28.2 22.6 25.1
50 56 73.0 67.9 68.4 66.6 76.9 70.0 28.4 20.2 23.6 22.4 26.8 24.4
25 43 72.1 65.6 66.8 64.1 80.5 70.0 27.3 17.3 21.2 21.4 29.7 24.9

Table 6. Matterport3D: Robustness to sparse data vs SPR
DRDF. Scene Acc/Cmp/F1 and Ray Acc/Cmp/F1 scores on dif-
ferent amounts of Matterport3D dataset. SPR DRDF’s Cmp scores
drop precipitously result in loss of F1 score. D2-DRDF is more
stable and robust to amount of data.

Scene Ray
SPR DRDF D2-DRDF SPR DRDF D2-DRDF

Im. % Acc Cmp F1 Acc Cmp F1 Acc Cmp F1 Acc Cmp F1

100 75.4 72 71.9 73.7 73.5 72.1 28.4 30.0 27.3 28.2 22.6 25.1
50 51.2 65.9 55.6 66.6 76.9 70.0 16.3 31.2 21.4 22.4 26.8 24.4
25 51.9 67.7 56.8 64.1 80.5 70.0 16.1 32.7 21.5 21.4 29.7 24.9

Table 7. Omnidata: Robustness to sparse data vs. ODS DRDF.
Scene Acc/Cmp/F1 and Ray Acc/Cmp/F1 metrics on different
amounts of Omnidata dataset. ODS DRDF’s Cmp scores drop pre-
cipitously resulting in loss of Ray F1 scores. D2-DRDF is more
stable and robust to amount of data.

Scene Ray
ODS DRDF D2-DRDF ODS DRDF D2-DRDF

Im. % M % Acc Cmp F1 Acc Cmp F1 Acc Cmp F1 Acc Cmp F1

25 86 82.9 74.1 77.2 69.2 79.1 72.8 43.9 37.3 40.3 29.3 35.6 32.1
12.5 83 81.4 72.3 75.3 65.9 79.2 70.9 41.8 33.4 37.1 26.3 33.0 29.3
6.3 78 80.5 69.5 73.4 68.8 77.5 71.8 40.0 27.5 32.6 27.4 28.8 28.1
3 69 80.5 63.7 69.8 63.7 81.1 70.4 37.1 14.0 20.3 24.4 29.5 26.7

Table 8. Omnidata: Robustness to sparse data vs. SPR DRDF.
Scene Acc/Cmp/F1 and Ray Acc/Cmp/F1 metrics on different
amounts of Omnidata dataset. SPR DRDF’s scores are signifi-
cantly worse as compared to D2-DRDF

Scene Ray
SPR DRDF D2-DRDF SPR DRDF D2-DRDF

Im. % Acc Cmp F1 Acc Cmp F1 Acc Cmp F1 Acc Cmp F1

25 65.9 64.4 63.9 69.2 79.1 72.88 23.7 29.3 26.2 29.3 35.6 32.1
12.5 66.1 62.3 62.8 65.9 79.2 70.9 24.0 28.5 26.1 26.3 33.0 29.3
6.3 45.9 39.2 40.9 68.8 77.5 71.8 16.4 3.5 5.7 27.4 28.8 28.1
3 47.6 41.5 42.9 63.7 81.1 70.4 18 2.1 3.8 24.4 29.5 26.7

E.1. Mesh Degradation under sparse views
SPR from sparse views. All baseline models trained with mesh
supervision from Screened Poisson Reconstruction used only the
subset of views with depth maps. We use depth maps at 512×512
resolution and convert to posed point clouds. Our final point cloud
for the scene is a combination of all the view point clouds. We es-
timate per point normals using Open3D’s [65] nearest neighbour
normal estimation. The estimated normals along with the unpro-
jected point cloud is used as input to the SPR at an oct-tree depth
of 9. This is the same standard used in reconstructing houses in
Matterport3D[1].
ODS vs. SPR. Our optimistic degradation setup is an upper bound
on the perfromance for methods that train with mesh supervi-
sion. In practice a fair comparison would require DRDF base-
line trained with meshes reconstructed using Screened Poisson
Reconstruction[26]. Meshes generated using SPR are of much
lower quality when compared to ODS meshes. In Fig. 11 we see

SPR reconstrution compared the ODS on Matterport3D at only
25% image views. The recovered SPR meshes from Open3D’s
open source implementation [65] have a much lower quality as
compared to meshes created by ODS. SPR meshes fail to keep the
details of the scene, showcasing that in practice training methods
that require mesh supervision is impractical when there are only a
sparse set of posed RGBD views.

(a) Mesh Degradation, 25% I (b) SPR, Octree Depth 9, 50% I (c) SPR, Octree Depth 9, 25% I

Figure 11. Screened Poisson Reconstruction (SPR) (a): degra-
dation with ODS on 25% image data; (b), (c): SPR reconstructed
mesh with 50% and 25% image data respectively. The meshes
from SPR (b,c) have lots of reconstruction errors and miss on de-
tails in the scene whereas the ODS mesh (a) has holes but with
reasonable geometry

Overall across both Matteport3D and OmniData we observe
that methods trained with SPR mesh achieve a much lower scene
F1 and ray F1 scores as compared to same approaches trained with
ODS meshes.

F. Qualitative Results
We show additional qualitative results on Matterport and Om-

nidata.
Matterport [1] Novel Views. In Fig. 13, 14 we show qualita-
tive outputs of D2-DRDF model trained on Matterport[1] dataset.
We color the occluded reconstructed regions with a surface normal
maps from Fig 12.
Matterport [1] Comparison to Baselines. In Fig. 15 we show
qualitative comparison with baseline methods. The outputs of D2-
DRDF model trained on Matterport[1] are comparable to DRDF
model trained with Mesh supervision. The density field baseline
trained with posed RGBD data fails at modeling the occluding ge-
ometry at test-time. We color the occluded reconstructed regions
with a surface normal maps from Fig 12.
Omnidata [11] Comparison to Baselines. In Fig. 16, 17 we
show qualitative outputs from D2-DRDF model trained on the
OmniData. We color the occluded reconstructed regions with a
surface normal maps from Fig 12.

Figure 12. Surface Normal Legend We use this surface normal
palette to color occluded points reconstructed by all the methods.
The surface normals are computed in the camera frame of refer-
ence. In Fig. 13, 14, 15, 16, 17 we show reconstructed empty
floors are colored in pink. The occluded side walls, kitchen cab-
inets, walls in rooms, other side of kitchen islands are colored in
green or purple

Image GT View 1 Pred View 1 GT View 2 Pred View 2

Figure 13. Matterport3D Novel Views. We show outputs of D2-DRDF from novel views on previously unseen input images. In column 2,
3 we show ground truth and prediction for view 1 and in 4,5 we show it for view 2. D2-DRDF is able to recover the inside of the kitchen is-
land in rows 1, 2. Our model reconstructs the occluded wall, and empty floor in rows 5,6. Please see videos in matterport novel.mp4
for additional results

Image GT View 1 Pred View 1 GT View 2 Pred View 2

Figure 14. Matterport3D Novel Views. Additional results to Fig 13. Row 2 shows reconstruction of the occluded kitchen island; Row 3
shows the reconstruction of an occluded empty room.

Image Density Field Mesh DRDF D2-DRDF Ground Truth

Figure 15. Matterport3D Baselines. Column 1 shows the input image for all the methods. Our method (column 4) shows comparable
reconstruction results to the mesh supervised DRDF (column 3). The density fields baselines (column 2) fails to recover sharp occluded
reconstruction while D2-DRDF get occluded parts of floors, kitchen islands, walls, kitchen cabinets. Please see video visualizations

Image GT View 1 Pred View 1 GT View 2 Pred View 2

Figure 16. OmniData [11] Novel Views. We follow the color scheme from Fig 12, 13 and show reconstruction results on unseen RGB
images from OmniData. Please see the video for additional results

Image GT View 1 Pred View 1 GT View 2 Pred View 2

Figure 17. OmniData [11] Novel Views. We follow the color scheme from Fig 12, 13 and show reconstruction results on unseen RGB
images from OmniData. Please see the video for additional results

	. Introduction
	. Related Work
	. Pixel-Aligned 3D Reconstruction & DRDF
	. Depth-Supervised DRDF Reconstuction
	. Losses
	. Implementation Details

	. Experiments
	. Mesh Prediction Results
	. Training on Incomplete Data
	. Adapting With Multiple Inputs

	. Overview
	. Implementation Details
	. Data Pre-processing
	. Training
	. Inference

	. D2-DRDF Penalty Functions
	. Entropy-Like Loss
	. Quantitative Evaluations
	. Mesh Degradation under sparse views

	. Qualitative Results

